skip to main content


Title: Supervised Deep Learning of Elastic SRV Distances on the Shape Space of Curves
Motivated by applications from computer vision to bioinformatics, the field of shape analysis deals with problems where one wants to analyze geometric objects, such as curves, while ignoring actions that preserve their shape, such as translations, rotations, scalings, or reparametrizations. Mathematical tools have been developed to define notions of distances, averages, and optimal deformations for geometric objects. One such framework, which has proven to be successful in many applications, is based on the square root velocity (SRV) transform, which allows one to define a computable distance between spatial curves regardless of how they are parametrized. This paper introduces a supervised deep learning framework for the direct computation of SRV distances between curves, which usually requires an optimization over the group of reparametrizations that act on the curves. The benefits of our approach in terms of computational speed and accuracy are illustrated via several numerical experiments on both synthetic and real data.  more » « less
Award ID(s):
1945224
NSF-PAR ID:
10316562
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Motivated by applications from computer vision to bioinformatics, the field of shape analysis deals with problems where one wants to analyze geometric objects, such as curves, while ignoring actions that preserve their shape, such as translations, rotations, scalings, or reparametrizations. Mathematical tools have been developed to define notions of distances, averages, and optimal deformations for geometric objects. One such framework, which has proven to be successful in many applications, is based on the square root velocity (SRV) transform, which allows one to define a computable distance between spatial curves regardless of how they are parametrized. This paper introduces a supervised deep learning framework for the direct computation of SRV distances between curves, which usually requires an optimization over the group of reparametrizations that act on the curves. The benefits of our approach in terms of computational speed and accuracy are illustrated via several numerical experiments on both synthetic and real data. 
    more » « less
  2. Abstract

    Applications in data science, shape analysis, and object classification frequently require comparison of probability distributions defined on different ambient spaces. To accomplish this, one requires a notion of distance on a given class of metric measure spaces—that is, compact metric spaces endowed with probability measures. Such distances are typically defined as comparisons between metric measure space invariants, such as distance distributions (also referred to as shape distributions, distance histograms, or shape contexts in the literature). Generally, distances defined in terms of distance distributions are actually pseudometrics, in that they may vanish when comparing nonisomorphic spaces. The goal of this paper is to set up a formal framework for assessing the discrimininative power of distance distributions, that is, the extent to which these pseudometrics fail to define proper metrics. We formulate several precise inverse problems in terms of these invariants and answer them in several categories of metric measure spaces, including the category of plane curves, where we give a counterexample to the curve histogram conjecture of Brinkman and Olver, the categories of embedded and Riemannian manifolds, where we obtain sphere rigidity results, and the category of metric graphs, where we obtain a local injectivity result along the lines of classical work of Boutin and Kemper on point cloud configurations. The inverse problems are further contextualized by the introduction of a variant of the Gromov–Wasserstein distance on the space of metric measure spaces, which is inspired by the original Monge formulation of optimal transport.

     
    more » « less
  3. Background Comparative morphology fundamentally relies on the orientation and alignment of specimens. In the era of geometric morphometrics, point-based homologies are commonly deployed to register specimens and their landmarks in a shared coordinate system. However, the number of point-based homologies commonly diminishes with increasing phylogenetic breadth. These situations invite alternative, often conflicting, approaches to alignment. The bivalve shell (Mollusca: Bivalvia) exemplifies a homologous structure with few universally homologous points—only one can be identified across the Class, the shell ‘beak’. Here, we develop an axis-based framework, grounded in the homology of shell features, to orient shells for landmark-based, comparative morphology. Methods Using 3D scans of species that span the disparity of shell morphology across the Class, multiple modes of scaling, translation, and rotation were applied to test for differences in shell shape. Point-based homologies were used to define body axes, which were then standardized to facilitate specimen alignment via rotation. Resulting alignments were compared using pairwise distances between specimen shapes as defined by surface semilandmarks. Results Analysis of 45 possible alignment schemes finds general conformity among the shape differences of ‘typical’ equilateral shells, but the shape differences among atypical shells can change considerably, particularly those with distinctive modes of growth. Each alignment corresponds to a hypothesis about the ecological, developmental, or evolutionary basis of morphological differences, but we suggest orientation via the hinge line for many analyses of shell shape across the Class, a formalization of the most common approach to morphometrics of shell form. This axis-based approach to aligning specimens facilitates the comparison of approximately continuous differences in shape among phylogenetically broad and morphologically disparate samples, not only within bivalves but across many other clades. 
    more » « less
  4. We develop a geometric mechanism to prove the existence of orbits that drift along a prescribed sequence of cylinders, under some general conditions on the dynamics. This mechanism can be used to prove the existence of Arnold diffusion for large families of perturbations of Tonelli Hamiltonians on A^3. Our approach can also be applied to more general Hamiltonians that are not necessarily convex. The main geometric objects in our framework are –dimensional invariant cylinders with boundary (not necessarily hyperbolic), which are assumed to admit center-stable and center-unstable manifolds. These enable us to define chains of cylinders, i.e., finite, ordered families of cylinders where each cylinder admits homoclinic connections, and any two consecutive cylinders in the chain admit heteroclinic connections. Our main result is on the existence of diffusing orbits which drift along such chains of cylinders, under precise conditions on the dynamics on the cylinders – i.e., the existence of Poincaré sections with the return maps satisfying a tilt condition – and on the geometric properties of the intersections of the center-stable and center-unstable manifolds of the cylinders – i.e., certain compatibility conditions between the tilt map and the homoclinic maps associated to its essential invariant circles. We give two proofs of our result, a very short and abstract one, and a more constructive one, aimed at possible applications to concrete systems. 
    more » « less
  5. null (Ed.)
    Bistability is exhibited by an object when it can be resting in two stable equilibrium states. Certain composite laminates exhibit bistability by having two stable curvatures of opposite sign with the two axes of curvature perpendicular to each other. These laminates can be actuated from one state to the other. The actuation from the original post-cure shape to the second shape is called as ‘snap-through’ and the reverse actuation is called as ‘snap-back’. This phenomenon can be used in applications for morphing structures, energy harvesting, and other applications where there is a conflicting requirement of a structure that is load-carrying, light, and shape-adaptable. MW Hyer first reported this phenomenon in his paper in 1981. He found that thin unsymmetric laminates do not behave according to the predictions of the Classical Lamination Theory (CLT). The CLT is a linear theory and predicts the post-cure shape of thin unsymmetric laminates to be a saddle. MW Hyer developed a non-linear method called the “Extended Classical Lamination Theory” which accurately predicted the laminate to have two cylindrical shapes. Since then, a number of researchers have tried to identify the key parameters affecting the behavior of such laminates. Geometric parameters such as stacking sequence, fibre orientation, cure cycle, boundary conditions, and force of actuation, have all been studied. The objective of this research is to define a relation between the length, width and thickness of square and rectangular laminates required to achieve bistability. Using these relations, a 36 in × 36 in bistable laminate is fabricated with a thickness of 30 CFRP layers. Also, it is proved that a laminate does not lose bistability with an increase in aspect ratio, as long as both sides of the rectangular laminate are above a certain ‘critical length’. A bistable laminate with dimensions of 2 in × 50 in is fabricated. Further, for laminates that are bistable, it is necessary to be able to predict the curvature and force required for actuation. Therefore, a method is developed which allows us to predict the curvature of both stable shapes, as well as the force of actuation of laminates for which the thickness and dimensions are known. Finite Element Analysis is used to carry out the numerical calculations, which are validated by fabricating laminates. The curvature of these laminates is measured using a profilometer and the force of actuation is recorded using a universal test set-up. 
    more » « less