skip to main content


Title: Diffeomorphic Registration with Density Changes for the Analysis of Imbalanced Shapes
This paper introduces an extension of diffeomorphic registration to enable the morphological analysis of data structures with inherent density variations and imbalances. Building on the framework of Large Diffeomorphic Metric Matching (LDDMM) registration and measure representations of shapes, we propose to augment previous measure deformation approaches with an additional density (or mass) transformation process. We then derive a variational formulation for the joint estimation of optimal deformation and density change between two measures. Based on the obtained optimality conditions, we deduce a shooting algorithm to numerically estimate solutions and illustrate the practical interest of this model for several types of geometric data such as fiber bundles with inconsistent fiber densities or incomplete surfaces.  more » « less
Award ID(s):
1945224
PAR ID:
10316564
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Information Processing in Medical Imaging
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Image registration is an essential task in medical image analysis. We propose two novel unsupervised diffeomorphic image registration networks, which use deep Residual Networks (ResNets) as numerical approximations of the underlying continuous diffeomorphic setting governed by ordinary differential equations (ODEs), viewed as a Eulerian discretization scheme. While considering the ODE-based parameterizations of diffeomorphisms, we consider both stationary and non-stationary (time varying) velocity fields as the driving velocities to solve the ODEs, which give rise to our two proposed architectures for diffeomorphic registration. We also employ Lipschitz-continuity on the Residual Networks in both architectures to define the admissible Hilbert space of velocity fields as a Reproducing Kernel Hilbert Spaces (RKHS) and regularize the smoothness of the velocity fields. We apply both registration networks to align and segment the OASIS brain MRI dataset. Experimental results demonstrate that our models are computational efficient and achieve comparable registration results with a smoother deformation field. 
    more » « less
  2. We study the performance of CLAIRE—a diffeomorphic multi-node, multi-GPU image-registration algorithm and software—in large-scale biomedical imaging applications with billions of voxels. At such resolutions, most existing software packages for diffeomorphic image registration are prohibitively expensive. As a result, practitioners first significantly downsample the original images and then register them using existing tools. Our main contribution is an extensive analysis of the impact of downsampling on registration performance. We study this impact by comparing full-resolution registrations obtained with CLAIRE to lower resolution registrations for synthetic and real-world imaging datasets. Our results suggest that registration at full resolution can yield a superior registration quality—but not always. For example, downsampling a synthetic image from 10243 to 2563 decreases the Dice coefficient from 92% to 79%. However, the differences are less pronounced for noisy or low contrast high resolution images. CLAIRE allows us not only to register images of clinically relevant size in a few seconds but also to register images at unprecedented resolution in reasonable time. The highest resolution considered are CLARITY images of size 2816×3016×1162. To the best of our knowledge, this is the first study on image registration quality at such resolutions. 
    more » « less
  3. Diffeomorphic registration faces challenges for high dimensional images, especially in terms of memory limits. Existing approaches either downsample/crop original images or approximate underlying transformations to reduce the model size. To mitigate this, we propose a Dividing and Down-sampling mixed Registration network (DDR-Net), a general architecture that preserves most of the image information at multiple scales while reducing memory cost. DDR-Net leverages the global context via downsampling the input and utilizes local details by dividing the input images to subvolumes. Such design fuses global and local information and obtains both coarse- and fine-level alignments in the final deformation fields. We apply DDR-Net to the OASIS dataset. The proposed simple yet effective architecture is a general method and could be extended to other registration architectures for better performance with limited computing resources. 
    more » « less
  4. The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project. 
    more » « less
  5. This paper presents a novel predictive model, MetaMorph, for metamorphic registration of images with appearance changes (i.e., caused by brain tumors). In contrast to previous learning-based registration methods that have little or no control over appearance-changes, our model introduces a new regularization that can effectively suppress the negative effects of appearance changing areas. In particular, we develop a piecewise regularization on the tangent space of diffeomorphic transformations (also known as initial velocity fields) via learned segmentation maps of abnormal regions. The geometric transformation and appearance changes are treated as joint tasks that are mutually beneficial. Our model MetaMorph is more robust and accurate when searching for an optimal registration solution under the guidance of segmentation, which in turn improves the segmentation performance by providing appropriately augmented training labels. We validate MetaMorph on real 3D human brain tumor magnetic resonance imaging (MRI) scans. Experimental results show that our model outperforms the state-of-the-art learning-based registration models. The proposed MetaMorph has great potential in various image-guided clinical interventions, e.g., real-time image-guided navigation systems for tumor removal surgery. 
    more » « less