skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variable particle size distributions reduce the sensitivity of global export flux to climate change
Abstract. Recent earth system models predict a 10 %–20 % decrease in particulate organic carbon export from the surface ocean by the end of the21st century due to global climate change. This decline is mainly caused by increased stratification of the upper ocean, resulting in reducedshallow subsurface nutrient concentrations and a slower supply of nutrients to the surface euphotic zone in low latitudes. These predictions,however, do not typically account for associated changes in remineralization depths driven by sinking-particle size. Here we combinesatellite-derived export and particle size maps with a simple 3-D global biogeochemical model that resolves dynamic particle size distributions toinvestigate how shifts in particle size may buffer or amplify predicted changes in surface nutrient supply and therefore export production. We showthat higher export rates are empirically correlated with larger sinking particles and presumably larger phytoplankton, particularly in tropical andsubtropical regions. Incorporating these empirical relationships into our global model shows that as circulation slows, a decrease in export isassociated with a shift towards smaller particles, which sink more slowly and are thus remineralized shallower. This shift towards shallowerremineralization in turn leads to greater recycling of nutrients in the upper water column and thus faster nutrient recirculation into the euphoticzone. The end result is a boost in productivity and export that counteracts the initial circulation-driven decreases. This negative feedbackmechanism (termed the particle-size–remineralization feedback) slows export decline over the next century by ∼ 14 % globally (from −0.29to −0.25 GtC yr−1) and by ∼ 20 % in the tropical and subtropical oceans, where export decreases are currently predicted tobe greatest. Our findings suggest that to more accurately predict changes in biological pump strength under a warming climate, earth system modelsshould include dynamic particle-size-dependent remineralization depths.  more » « less
Award ID(s):
1635414
PAR ID:
10316594
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
1
ISSN:
1726-4189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. While there is agreement that global warming over the 21st century is likely to influence the biological pump, Earth system models (ESMs) display significant divergence in their projections of future new production. This paper quantifies and interprets the sensitivity of projected changes in new production in an idealized global ocean biogeochemistry model. The model includes two tracers that explicitly represent nutrient transport, light- and nutrient-limited nutrient uptake by the ecosystem (new production), and export via sinking organic particles. Globally, new production declines with warming due to reduced surface nutrient availability, as expected. However, the magnitude, seasonality, and underlying dynamics of the nutrient uptake are sensitive to the light and nutrient dependencies of uptake, which we summarize in terms of a single biological timescale that is a linear combination of the partial derivatives of production with respect to light and nutrients. Although the relationships are nonlinear, this biological timescale is correlated with several measures of biogeochemical function: shorter timescales are associated with greater global annual new production and higher nutrient utilization. Shorter timescales are also associated with greater declines in global new production in a warmer climate and greater sensitivity to changes in nutrients than light. Future work is needed to characterize more complex ocean biogeochemical models in terms of similar timescale generalities to examine their climate change implications. 
    more » « less
  2. Sinking marine particles transport carbon from the ocean’s surface to the deep ocean, thereby contributing to atmospheric carbon dioxide modulation and benthic food supply. Many studies have shown that particle size is not a good predictor of particle sinking speed or behavior. Thus, the overarching question of this dissertation: why do certain particles sink faster or deeper than others, and is there a way to predict what depth a particle will reach in the ocean? Multiple facets of the ocean’s biological carbon pump are investigated using a combination of sediment traps, in situ particle imaging, and machine learning technology. In the Gulf of Alaska, we find aggregates contributed 61% to total carbon flux, suggesting that aggregation processes, not zooplankton repackaging, played a dominant role in carbon export. The role of the physical environment on the biological carbon pump was investigated in the Southern Ocean. Fluffy aggregates and grazers were most common at the surface during a phytoplankton bloom, whereas 1-3 months after a bloom, grazers are in the mesopelagic and feces and dense aggregates are in high abundance in the bathypelagic. These results shed light on how frontal structures in the Southern Ocean influence patterns of particle export and remineralization in the mesopelagic with implications for how this influences global biogeochemical cycles. Finally, the effect of biogeochemical province and carbonate saturation state was investigated in the tropical and subtropical North Atlantic and Pacific. We find that plankton distribution and marine particle morphology in the Atlantic Ocean are more strongly impacted by aragonite and calcite saturation state, despite much shallower saturation horizons in the Pacific. This research can help better predict how the strength of carbon storage in the ocean may change with climate change, which is critical for climate modelers to predict the effects of climate change more accurately. 
    more » « less
  3. Biogenic particles originating in the ocean’s well-lit, shallow layer help regulate Earth's climate by absorbing carbon dioxide from the atmosphere and subsequently sinking to the ocean’s depths. Subtropical gyres are the largest ocean habitats on Earth and are characterized by year-round high light, warm temperatures, and low supply of nutrients. However, even in persistently these low-nutrient regions, conditions vary on multiple temporal and spatial scales, making low-frequency observations—even monthly—difficult to interpret. 
    more » « less
  4. The sustenance of marine primary productivity depends on the supply of macro- and micronutrients to photosynthesizers in the ocean’s sunlit surface. Without supply from the deep, sinking particles would deplete the upper ocean of these vital elements within decades. Over the last 20 years, it has been recognized that the Southern Ocean, where nutrient-rich deep waters are brought to the surface and the water masses that fill much of the upper ocean are formed, plays a pivotal role in replenishing upper-ocean nutrients. Photosynthesizers that grow and take up nutrients within the Southern Ocean circulation “hub” thus have an outsize influence on global-​scale distributions of macronutrients and many micronutrients. The GEOTRACES program has contributed observations of the concentration and stable isotope composition of “nutrient-​type” metals like zinc, cadmium, and nickel, within the Southern Ocean and beyond it, that are driving a sea change in our understanding of their marine cycles. Simultaneously, our understanding of Southern Ocean circulation has been refined, with recognition of the importance of longitudinal variability and subtropical overturning. Here, we aim to bring together these two strands of progress, review insights gained into marine micronutrient cycling, and consider the questions that remain to be resolved. 
    more » « less
  5. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes. 
    more » « less