Abstract Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae. 
                        more » 
                        « less   
                    
                            
                            Inhibitory effect of indole analogs against Paenibacillus larvae, the causal agent of American foulbrood disease
                        
                    
    
            Abstract Paenibacillus larvae, a Gram-positive bacterium, causes American foulbrood (AFB) in honey bee larvae (Apis mellifera Linnaeus [Hymenoptera: Apidae]). P. larvae spores exit dormancy in the gut of bee larvae, the germinated cells proliferate, and ultimately bacteremia kills the host. Hence, spore germination is a required step for establishing AFB disease. We previously found that P. larvae spores germinate in response to l-tyrosine plus uric acid in vitro. Additionally, we determined that indole and phenol blocked spore germination. In this work, we evaluated the antagonistic effect of 35 indole and phenol analogs and identified strong inhibitors of P. larvae spore germination in vitro. We further tested the most promising candidate, 5-chloroindole, and found that it significantly reduced bacterial proliferation. Finally, feeding artificial worker jelly containing anti-germination compounds to AFB-exposed larvae significantly decreased AFB infection in laboratory-reared honey bee larvae. Together, these results suggest that inhibitors of P. larvae spore germination could provide another method to control AFB. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1757316
- PAR ID:
- 10316602
- Date Published:
- Journal Name:
- Journal of Insect Science
- Volume:
- 17
- Issue:
- 5
- ISSN:
- 1536-2442
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Downy mildew (DM) diseases are caused by destructive obligate pathogens with limited control options, posing a significant threat to global agriculture. RNA interference (RNAi) has emerged as a promising, environmentally sustainable strategy for disease management. We evaluated the efficacy of dsRNA-mediated RNAi in suppressing key biological functions in DM pathogens of Arabidopsis thaliana, pea and lettuce: Hyaloperonospora arabidopsidis (Hpa), Peronospora viciae f. sp. pisi (Pvp) and Bremia lactucae (Bl), respectively. Conserved genes, cellulose synthase 3 (CesA3) and beta-tubulin (BTUB), were targeted. Silencing these genes significantly impaired spore germination and infection across species and reduced gene expression correlated with suppressed sporulation, confirming silencing efficacy. We tested dsRNAs from chemical synthesis, in vitro transcription, and Escherichia coli expression. Uptake and silencing efficiency varied with dsRNA length and concentration. In Hpa, short dsRNAs (21–25 bp) produced a variable spore germination rate, with 25 bp dsRNA causing a 247.10% increase, whereas longer dsRNAs (≥ 30 bp) completely inhibited germination. Similarly, in Pvp, dsRNAs of 21–25 bp resulted in a 73.05%–77.46% germination rate, while 30–75 bp dsRNAs abolished germination. Confocal microscopy using Cy-5-labelled short-synthesised dsRNA (SS-dsRNA) confirmed uptake by spores. Sequence specificity influenced efficacy, highlighting the need for precise target design. Multiplexed RNAi impacted silencing synergistically, further reducing germination and sporulation in Hpa. Importantly, SS-dsRNA-mediated silencing was durable, with reduced gene expression sustained at 4, 7, 10 and 11 days post-inoculation. Taken together, our findings demonstrate the potential of dsRNA-mediated gene silencing as a precise, sustainable tool for managing DM pathogens in multiple crop speciesmore » « less
- 
            Gilbert, Jack A (Ed.)ABSTRACT Bacteria and archaea employ a rudimentary immune system, CRISPR-Cas, to protect against foreign genetic elements such as bacteriophage. CRISPR-Cas systems are found inBombella apis.B. apisis an important honey bee symbiont, found primarily in larvae, queens, and hive compartments.B. apisis found in the worker bee gut but is not considered a core member of the bee microbiome and has therefore been understudied with regard to its importance in the honey bee colony. However,B. apisappears to play beneficial roles in the colony, by protecting developing brood from fungal pathogens and by bolstering their development under nutritional stress. Previously, we identified CRISPR-Cas systems as being acquired byB. apisin its transition to bee association, as they are absent in a sister clade. Here, we assess the variation and distribution of CRISPR-Cas types acrossB. apisstrains. We found multiple CRISPR-Cas types, some of which have multiple arrays, within the sameB. apisgenomes and also in the honey bee queen gut metagenomes. We analyzed the spacers between strains to identify the history of mobile element interaction for eachB. apisstrain. Finally, we predict interactions between viral sequences and CRISPR systems from different honey bee microbiome members. Our analyses show that theB. apisCRISPR-Cas systems are dynamic; that microbes in the same niche have unique spacers, which supports the functionality of these CRISPR-Cas systems; and that acquisition of new spacers may be occurring in multiple locations in the genome, allowing for a flexible antiviral arsenal for the microbe. IMPORTANCEHoney bee worker gut microbes have been implicated in everything from protection from pathogens to breakdown of complex polysaccharides in the diet. However, there are multiple niches within a honey bee colony that host different groups of microbes, including the acetic acid bacteriumBombella apis.B. apisis found in the colony food stores, in association with brood, in worker hypopharyngeal glands, and in the queen’s digestive tract. The roles thatB. apismay serve in these environments are just beginning to be discovered and include the production of a potent antifungal that protects developing bees and supplementation of dietary lysine to young larvae, bolstering their nutrition. Niche specificity inB. apismay be affected by the pressures of bacteriophage and other mobile elements, which may target different strains in each specific bee environment. Studying the interplay betweenB. apisand its mobile genetic elements (MGEs) may help us better understand microbial community dynamics within the colony and the potential ramifications for the honey bee host.more » « less
- 
            Graf, Joerg (Ed.)ABSTRACT Fungal pathogens, among other stressors, negatively impact the productivity and population size of honey bees, one of our most important pollinators (1, 2), in particular their brood (larvae and pupae) (3, 4). Understanding the factors that influence disease incidence and prevalence in brood may help us improve colony health and productivity. Here, we examined the capacity of a honey bee-associated bacterium, Bombella apis , to suppress the growth of fungal pathogens and ultimately protect bee brood from infection. Our results showed that strains of B. apis inhibit the growth of two insect fungal pathogens, Beauveria bassiana and Aspergillus flavus , in vitro . This phenotype was recapitulated in vivo ; bee broods supplemented with B. apis were significantly less likely to be infected by A. flavus . Additionally, the presence of B. apis reduced sporulation of A. flavus in the few bees that were infected. Analyses of biosynthetic gene clusters across B. apis strains suggest antifungal candidates, including a type 1 polyketide, terpene, and aryl polyene. Secreted metabolites from B. apis alone were sufficient to suppress fungal growth, supporting the hypothesis that fungal inhibition is mediated by an antifungal metabolite. Together, these data suggest that B. apis can suppress fungal infections in bee brood via secretion of an antifungal metabolite. IMPORTANCE Fungi can play critical roles in host microbiomes (5–7), yet bacterial-fungal interactions are understudied. For insects, fungi are the leading cause of disease (5, 8). In particular, populations of the European honey bee ( Apis mellifera ), an agriculturally and economically critical species, have declined in part due to fungal pathogens. The presence and prevalence of fungal pathogens in honey bees have far-reaching consequences, endangering other species and threatening food security (1, 2, 9). Our research highlights how a bacterial symbiont protects bee brood from fungal infection. Further mechanistic work could lead to the development of new antifungal treatments.more » « less
- 
            Although the evolution of spores was critical to the diversification of plants on land, sporogenesis is incompletely characterized for model plants such as Physcomitrium patens . In this study, the complete process of P. patens sporogenesis is detailed from capsule expansion to mature spore formation, with emphasis on the construction of the complex spore wall and proximal aperture. Both diploid (sporophytic) and haploid (spores) cells contribute to the development and maturation of spores. During capsule expansion, the diploid cells of the capsule, including spore mother cells (SMCs), inner capsule wall layer (spore sac), and columella, contribute a locular fibrillar matrix that contains the machinery and nutrients for spore ontogeny. Nascent spores are enclosed in a second matrix that is surrounded by a thin SMC wall and suspended in the locular material. As they expand and separate, a band of exine is produced external to a thin foundation layer of tripartite lamellae. Dense globules assemble evenly throughout the locule, and these are incorporated progressively onto the spore surface to form the perine external to the exine. On the distal spore surface, the intine forms internally, while the spiny perine ornamentation is assembled. The exine is at least partially extrasporal in origin, while the perine is derived exclusively from outside the spore. Across the proximal surface of the polar spores, an aperture begins formation at the onset of spore development and consists of an expanded intine, an annulus, and a central pad with radiating fibers. This complex aperture is elastic and enables the proximal spore surface to cycle between being compressed (concave) and expanded (rounded). In addition to providing a site for water intake and germination, the elastic aperture is likely involved in desiccation tolerance. Based on the current phylogenies, the ancestral plant spore contained an aperture, exine, intine, and perine. The reductive evolution of liverwort and hornwort spores entailed the loss of perine in both groups and the aperture in liverworts. This research serves as the foundation for comparisons with other plant groups and for future studies of the developmental genetics and evolution of spores across plants.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    