skip to main content

This content will become publicly available on February 2, 2023

Title: Rapid, interface-driven domain orientation in bottlebrush diblock copolymer films during thermal annealing
Favorable polymer-substrate interactions induce surface orientation fields in block copolymer (BCP) melts. In linear BCP processed near equilibrium, alignment of domains generally persists for a small number of periods (∼4–6 D 0 ) before randomization of domain orientation. Bottlebrush BCP are an emerging class of materials with distinct chain dynamics stemming from substantial molecular rigidity, enabling rapid assembly at ultrahigh (>100 nm) domain periodicities with strong photonic properties (structural color). This work assesses interface-induced ordering in PS- b -PLA bottle b rush diblock copolymer films during thermal annealing between planar surfaces. To clearly observe the decay in orientational order from surface to bulk, we choose to study micron-scale films spanning greater than 200 lamellar periods. In situ optical microscopy and transmission UV-Vis spectroscopy are used to monitor photonic properties during annealing and paired with ex situ UV-Vis reflection measurement, cross-sectional scanning electron microscopy (SEM), and small-angle X-ray scattering (SAXS) to probe the evolution of domain microstructure. Photonic properties were observed to saturate within minutes of annealing at 150 °C, with distinct variation in transmission response as a function of film thickness. The depth of the highly aligned surface region was found to vary stochastically in the range of 30–100 lamellar more » periods, with the sharpness of the orientation gradient decreasing substantially with increasing film thickness. This observation suggests a competition between growth of aligned, heterogeneously nucleated, grains at the surface and orientationally isotropic, homogeneously nucleated, grains throughout the bulk. This work demonstrates the high potential of bottlebrush block copolymers in rapid fabrication workflows and provides a point of comparison for future application of directed self-assembly to BBCP ordering. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Soft Matter
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.
  2. The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene- block -methymethacrylate) (PS- b -PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO,more »demonstrates the broader applications of such membranes.« less
  3. The self-assembly of gold nanorods (AuNRs) of different sizes with a block copolymer (BCP) is studied. Polystyrene- block -poly(2-vinylpyridine) (PS- b -P2VP) films containing P2VP functionalized AuNRs are solvent annealed resulting in a BCP morphology of vertical P2VP cylinders in a PS matrix. At the surface of the PS- b -P2VP films long AuNRs are found in the bridging and vertical states. The bridging state is where the long axis of the AuNR is parallel to the film surface, the AuNR is embedded in the film, and each end of the AuNR is at the top of nearest neighbor P2VP cylinders. The vertical state is where the AuNR is localized within a vertical P2VP cylinder, the AuNR long axis is perpendicular to the film surface and the upper tip of the AuNR is at the film surface. Short AuNRs were found in the bridging and vertical states as well as in a state not observed for the long AuNRs, the centered state. The centered state is where an AuNR has its long axis parallel to the film surface, is embedded in the film, and is centered over a vertical P2VP cylinder. Hybrid particle-field theory (HPFT) simulations modeling the experimental systemmore »predict that for the long AuNRs only the bridging state should be observed while for the short AuNRs only the bridging and centered states should be observed. Possible explanations for why the vertical state is observed in experiments despite being thermodynamically unfavorable in simulations are discussed. HPFT simulations also show that when a nanorod is in the bridging state the two cylinders it bridges remain intact and extend from the nanorod to the substrate. Further, the minority block of the BCP is shown to wet the bottom of the bridging nanorod. The bridging state is very promising for the future development of self-assembled nanoscale devices.« less
  4. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growthmore »processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

    « less
  5. Segalman, Rachel (Ed.)
    The block copolymer (BCP) phase separation is an intriguing phenomenon, the dynamics of which can be expected to differ significantly from that of the polymer blends due to the chain connectivity constraints. The BCP phase separation dynamics has been studied theoretically, but there has been little experimental evidence to confirm the BCP domain growth scaling laws put forward by theoretical studies. Here, we demonstrate the dynamics of late-stage lamellar BCP domain coarsening and show that the scaling exponent for domain growth is ≈1/6 (0.17) irrespective of the annealing temperature, which is close to the scaling exponent of 0.2 shown by theoretical studies. Furthermore, we show that the pre-factors in the domain coarsening equation show Arrhenius dependence on temperature indicating that the BCP domain growth dynamics is Arrhenius.