skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1847828

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjugated polymers can undergo complex, concentration‐dependent self‐assembly during solution processing, yet little is known about its impact on film morphology and device performance of organic solar cells. Herein, lyotropic liquid crystal (LLC) mediated assembly across multiple conjugated polymers is reported, which generally gives rise to improved device performance of blade‐coated non‐fullerene bulk heterojunction solar cells. Using D18 as a model system, the formation mechanism of LLC is unveiled employing solution X‐ray scattering and microscopic imaging tools: D18 first aggregates into semicrystalline nanofibers, then assemble into achiral nematic LLC which goes through symmetry breaking to yield a chiral twist‐bent LLC. The assembly pathway is driven by increasing solution concentration – a common driving force during evaporative assembly relevant to scalable manufacturing. This assembly pathway can be largely modulated by coating regimes to give 1) lyotropic liquid crystalline assembly in the evaporation regime and 2) random fiber aggregation pathway in the Landau–Levich regime. The chiral liquid crystalline assembly pathway resulted in films with crystallinity 2.63 times that of films from the random fiber aggregation pathway, significantly enhancing the T80 lifetime by 50‐fold. The generality of LLC‐mediated assembly and enhanced device performance is further validated using polythiophene and quinoxaline‐based donor polymers. 
    more » « less
  2. Abstract Tuning structures of solution‐state aggregation and aggregation‐mediated assembly pathways of conjugated polymers is crucial for optimizing their solid‐state morphology and charge‐transport property. However, it remains challenging to unravel and control the exact structures of solution aggregates, let alone to modulate assembly pathways in a controlled fashion. Herein, aggregate structures of an isoindigo–bithiophene‐based polymer (PII‐2T) are modulated by tuning selectivity of the solvent toward the side chain versus the backbone, which leads to three distinct assembly pathways: direct crystallization from side‐chain‐associated amorphous aggregates, chiral liquid crystal (LC)‐mediated assembly from semicrystalline aggregates with side‐chain and backbone stacking, and random agglomeration from backbone‐stacked semicrystalline aggregates. Importantly, it is demonstrated that the amorphous solution aggregates, compared with semicrystalline ones, lead to significantly improved alignment and reduced paracrystalline disorder in the solid state due to direct crystallization during the meniscus‐guided coating process. Alignment quantified by the dichroic ratio is enhanced by up to 14‐fold, and the charge‐carrier mobility increases by a maximum of 20‐fold in films printed from amorphous aggregates compared to those from semicrystalline aggregates. This work shows that by tuning the precise structure of solution aggregates, the assembly pathways and the resulting thin‐film morphology and device properties can be drastically tuned. 
    more » « less
  3. Abstract Molecular orientation plays a critical role in controlling carrier transport in organic semiconductors (OSCs). However, this aspect has not been explored for surface doping of OSC thin films. The challenge lies in lack of methods to precisely modulate relative molecular orientation between the dopant and the OSC host. Here, the impact of molecular orientation on dopant–host electronic interactions by large modulation of conjugated polymer orientation via solution coating is reported. Combining synchrotron‐radiation X‐ray measurements with spectroscopic and electrical characterizations, a quantitative correlation between doping‐enhanced charge carrier mobility and the Herman's orientation parameter is presented. This direct correlation can be attributed to enhanced charge‐transfer interactions at host/dopant interface with increasing face‐on orientation of the polymer. These results demonstrate that the surface doping effect can be fundamentally manipulated by controlling the molecular orientation of the OSC layer, enabling optimization of carrier transport. 
    more » « less
  4. ABSTRACT Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried outviaimage analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then use this program in a case study of meniscus‐guided coating of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C8‐BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1622–1634 
    more » « less
  5. Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect. 
    more » « less
    Free, publicly-accessible full text available March 7, 2026
  6. The fine balance between enhanced processability and decreased device performance in donor–acceptor polymeric semiconductors is elucidated using discrete siloxane side chains. 
    more » « less
  7. Abstract Cooperativity is used by living systems to circumvent energetic and entropic barriers to yield highly efficient molecular processes. Cooperative structural transitions involve the concerted displacement of molecules in a crystalline material, as opposed to typical molecule-by-molecule nucleation and growth mechanisms which often break single crystallinity. Cooperative transitions have acquired much attention for low transition barriers, ultrafast kinetics, and structural reversibility. However, cooperative transitions are rare in molecular crystals and their origin is poorly understood. Crystals of 2-dimensional quinoidal terthiophene (2DQTT-o-B), a high-performance n-type organic semiconductor, demonstrate two distinct thermally activated phase transitions following these mechanisms. Here we show reorientation of the alkyl side chains triggers cooperative behavior, tilting the molecules like dominos. Whereas, nucleation and growth transition is coincident with increasing alkyl chain disorder and driven by forming a biradical state. We establish alkyl chain engineering as integral to rationally controlling these polymorphic behaviors for novel electronic applications. 
    more » « less