- Award ID(s):
- 1849264
- Publication Date:
- NSF-PAR ID:
- 10316647
- Journal Name:
- AIAA SCITECH 2022 Forum
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designsmore »
-
Characterization of the thermal gradients within supersonic and hypersonic flows is essential for understanding transition, turbulence, and aerodynamic heating. Developments in novel, impactful non-intrusive techniques are key for enabling flow characterizations of sufficient detail that provide experimental validation datasets for computational simulations. In this work, Resonantly Ionized Photoemission Thermometry (RIPT) signals are directly imaged using an ICCD camera to realize the techniques 1D measurement capability for the first time. The direct imaging scheme presented for oxygen-based RIPT (O2RIPT) uses the previously established calibration data to direct excite various resonant rotational peaks within the S-branch of the
C 3Π, (v = 2) ←X 3Σ(v ′ = 0) absorption band of O2. The efficient ionization of O2liberates electrons that induce electron avalanche ionization of local N2molecules generating N2+, which primarily deexcites via photoemissions of the first negative band of. When sufficient lasing energy is used, the ionization region and subsequent photoemission signal is achieved along a 1D line thus, if directly imaged can allow for gas temperature assignments along said line; demonstrated here of up to five centimeters in length. The temperature gradients present within the ensuing shock train of a supersonic under expanded free jet serves as a basis of characterizationmore » -
Abstract Fuel efficiency becomes very important for new vehicles. Therefore, improving the aerodynamics of tires has started to receive increasing interest. While the experimental approaches are time-consuming and costly, numerical methods have been employed to investigate the air flow around tires. Rotating boundary and contact patch are important challenges in the modeling of tire aerodynamics. Therefore, majority of the current modeling approaches are simplified by neglecting the tire deformation and contact patch. In this study, a baseline computational fluid dynamics (CFD) model is created for a tire with contact patch. To generate mesh efficiently, a hybrid mesh, which combines hex elements and polyhedral elements, is used. Then, three modeling approaches (rotating wall, multiple reference frame, and sliding mesh) are compared for the modeling of tire rotation. Additionally, three different tire designs are investigated, including smooth tire, grooved tire, and grooved tire with open rim. The predicted results of the baseline model agree well with the measured data. Additionally, the hybrid mesh shows to be efficient and to generate accurate results. The CFD model tends to overpredict the drag of a rotating tire with contact patch. Sliding mesh approach generated more accurate predictions than the rotating wall and multiple reference framemore »
-
Abstract An increasingly common power saving practice in data center thermal management is to swap out air cooling unit blower fans with electronically commutated plug fans, Although, both are centrifugal blowers. The blade design changes: forward versus backward curved with peak static efficiencies of 60% and 75%, respectively, which results in operation power savings. The side effects of which are not fully understood. Therefore, it has become necessary to develop an overall understanding of backward curved blowers and compare the resulting flow, pressure, and temperature fields with forwarding curved ones in which the induced fields are characterized, compared, and visualized in a reference data center which may aid data center planning and operation when making the decisions of which computer room air handler (CRAH) technology to be used. In this study, experimental and numerical characterization of backward curved blowers is introduced. Then, a physics-based computational fluid dynamics model is built using the 6sigmaroom tool to predict/simulate the measured fields. Five different scenarios were applied at the room level for the experimental characterization of the cooling units and another two scenarios were applied for comparison and illustration of the interaction between different CRAH technologies. Four scenarios were used to characterize amore »
-
Polymer optical fibers (POFs) are playing an important role in industrial applications nowadays due to their ease of handling and resilience to bending and environmental effects. A POF can tolerate a bending radius of less than 20 mm, it can work in environments with temperatures ranging from −55 °C to +105 °C, and its lifetime is around 20 years. In this paper, we propose a novel, rigorous, and efficient computational model to estimate the most important parameters that determine the characteristics of light propagation through a step-index polymer optical fiber (SI-POF). The model uses attenuation, diffusion, and mode group delay as functions of the propagation angle to characterize the optical power transmission in the SI-POF. Taking into consideration the mode group delay allows us to generalize the computational model to be applicable to POFs with different index profiles. In particular, we use experimental measurements of spatial distributions and frequency responses to derive accurate parameters for our SI-POF simulation model. The experimental data were measured at different fiber lengths according to the cut-back method. This method consists of taking several measurements such as frequency responses, angular intensity distributions, and optical power measurements over a long length of fiber (>100 m), thenmore »