skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combined Magnetostratigraphy From Three Localities of the Rainstorm Member of the Johnnie Formation in California and Nevada, United States Calibrated by Cyclostratigraphy: A 13 R/Ma Reversal Frequency for the Ediacaran
A combined magnetostratigraphy for the Rainstorm Member of the Ediacaran Johnnie Formation was constructed using the sediment accumulation rates determined by rock magnetic cyclostratigraphy for three localities of the Rainstorm Member to provide a high resolution, time-calibrated record of geomagnetic field reversal frequency at a critical time period in Earth history. Two previously reported magnetostratigraphy records from Death Valley, California, the Nopah Range and Winters Pass Hills ( Minguez et al., 2015 ), were combined with new paleomagnetic and cyclostratigraphic results from the Desert Range locality of the Rainstorm Member in south central Nevada, United States . The Johnnie oolite marker bed is at the base of each of the three sections and allows their regional correlation. The Nopah Range and Desert Range localities have similar sediment accumulation rates of ∼5 cm/ka, so their stratigraphic sections can be combined directly. The Winters Pass Hills locality has a higher sediment accumulation rate of 8.4 cm/ka, therefore its stratigraphic positions are multiplied by 0.6 to combine with the Desert Range and Nopah Range magnetostratigraphy. The thermal demagnetization results from the Desert Range locality isolates characteristic remanent magnetizations that indicate two nearly antipodal east-west and shallow directions and a mean paleopole (11.7˚N, 348.4˚E) that is consistent with “shallow” Ediacaran directions. The Desert Range also yields a magnetic susceptibility rock magnetic cyclostratigraphy that records short eccentricity, obliquity, and precession astronomically-forced climate cycles in the Ediacaran. The high-resolution combined magnetostratigraphy with nearly meter-scale stratigraphic spacing (nominally 23 ka, based on the Desert Range sediment accumulation rate), indicates 11 polarity intervals in a cyclostratigraphy-calibrated duration of 849 ka, indicating a reversal frequency of 13 R/Ma. The Rainstorm Member records the Shuram carbon isotope excursion, hence its age is ∼574 Ma. Given the recent cyclostratigraphy-calibrated reversal frequency of 20 R/Ma from the Zigan Formation ( Levashova et al., 2021 ) at 547 Ma, our results show that reversal frequency was high but fluctuated during the Ediacaran.  more » « less
Award ID(s):
1828825
PAR ID:
10316662
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
9
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Leucite Hills Volcanic Field, southwest Wyoming comprises two dozen volcanic features including necks, flows, dikes, and plugs. It has been the focus of many petrologic studies as its volcanic and shallow intrusive rocks are one of the only surficial manifestations of ultrapotassic lamproite. We build on paleomagnetic findings of Sheriff and Shive (1980) by providing further paleomagnetic data from the Boars Tusk dike and Black Rock flows. We also characterize the magnetic mineral assemblage of these lamproites. Principal component analysis of alternating field (AF) and thermal demagnetization data indicate that the dike and breccias of Boars Tusk record a reversed magnetic polarity and the Black Rock lava records a normal polarity, both consistent with previous findings. This recording is typically carried by minerals with coercivities >15 mT and susceptibility measurements indicate magnetite, maghemite, and titanomagnetite as likely magnetic carriers. AF and thermal demagnetization experiments evince secondary magnetizations held by lower coercivity grains, likely caused by lightning strikes. 40Ar/39Ar incremental heating experiments from Boars Tusk and Black Rock give plateau ages of ∼ 2500 ka and ∼ 900 ka, respectively. Recent advances in the chronology of geomagnetic field reversals and excursions during the Quaternary permit integration of the Boars Tusk dike into the lower Matuyama chron, whereas the Black Rock lavas most probably record the Kamikatsura excursion. Notably, Black Rock records high inclinations that suggest the short-lived excursion achieved a full geomagnetic reversal, something not observed at other localities recording the Kamikatsura excursion. The Leucite Hills offer further opportunities to refine the Quaternary geomagnetic instability time scale (GITS), and to improve understanding of the eruptive and geomorphic evolution of this unusual volcanism. 
    more » « less
  2. Abstract Since the publication of 40Ar/39Ar dates from Cretaceous bentonites in the Western Interior Basin by J.D. Obradovich in 1993 and in Japan by J.D. Obradovich and colleagues in 2002, improvements in the 40Ar/39Ar method have included a shift to astronomically calibrated ages for standard minerals and development of a new generation of multi-collector mass spectrometers. Thus, the 40Ar/39Ar chronometer can yield results that are synchronous with U-Pb zircon dates and astrochronologic age models for Cretaceous strata. Ages determined by Obradovich have ± 2σ analytical uncertainties of ± 400 ka (excluding J value or systematic contributions) that have been used to discriminate stratigraphic events at ca. 1 Ma resolution. From among several dozen sanidine samples, 32 of which were dated by Obradovich in 1993, we present new multi-collector 40Ar/39Ar ages that reduce the average analytical uncertainties by nearly an order of magnitude. These new ages (where the uncertainties also include the contribution of the neutron fluence J value) include: Topmost Bentonite, Mowry Shale, Kaycee, Wyoming, USA, 97.52 ± 0.09 Ma Clay Spur Bentonite, Mowry Shale, Casper, Wyoming, 98.17 ± 0.11 Ma Arrow Creek Bentonite, Colorado Shale, Montana, USA, 99.12 ± 0.14 Ma Upper Newcastle Sandstone, Black Hills, Wyoming, 99.49 ± 0.07 Ma Middle Newcastle Sandstone, Black Hills, Wyoming, 99.58 ± 0.12 Ma Shell Creek Shale, Bighorn Basin, Crow Reservation, Wyoming, 99.62 ± 0.07 Ma Shell Creek Shale, Bighorn Basin, Greybull, Wyoming, 99.67 ± 0.13 Ma Shell Creek Shale, Bighorn Basin, Lander, Montana, 100.07 ± 0.07 Ma Muddy Sandstone, Wind River Basin, Wyoming, 101.23 ± 0.09 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 101.36 ± 0.11 Ma Vaughn Member, Blackleaf Formation, Sweetgrass Arch, Montana, 102.68 ± 0.07 Ma Taft Hill Member, Blackleaf Formation, Sweetgrass Arch, Montana, 103.08 ± 0.11 Ma Base of the Skull Creek Shale, Black Hills, Wyoming, 104.87 ± 0.10 Ma Thermopolis Shale, Bighorn Basin, Wyoming, 106.37 ± 0.11 Ma A new U-Pb zircon age of 104.69 ± 0.07 Ma from the Skull Creek Shale at Dinosaur Ridge, Colorado, USA, is close to the new 40Ar/39Ar age of the Skull Creek Shale in the Black Hills, Wyoming, but 5 m.y. is missing in the unconformity between the Skull Creek Shale of the Black Hills and the overlying Newcastle Sandstone. Considering the average total uncertainties that include decay constant and standard age or tracer composition for the 40Ar/39Ar (± 0.19 Ma) and the U-Pb (± 0.13 Ma) ages does not alter this finding. Moreover, the lower Thermopolis Shale in the Bighorn Basin is 1.5 Ma older than the Skull Creek Shale in the Black Hills. The 100.07 ± 0.07 Ma Shell Creek Bentonite in Montana is close to the Albian–Cenomanian boundary age of 100.2 ± 0.2 Ma of Obradovich and colleagues from Hokkaido, Japan, and 100.5 ± 0.5 Ma adopted in the 2012 geological time scale of J.G. Ogg and L.A. Hinnov. Our findings indicate that correlations based on similarity of lithology, without independent radioisotopic ages or detailed biostratigraphic constraints, can be problematic or invalid. There is much more time missing in unconformities than has been previously recognized in these important, petroleum-bearing reservoir strata. 
    more » « less
  3. Lacustrine strata are often among the highest-resolution terrestrial paleoclimate archives available. The manner in which climate signals are registered into lacustrine deposits varies, however, as a function of complex sedimentologic and diagenetic processes. The retrieval of reliable records of climatic forcing therefore requires a means of evaluating the potential influence of changing sedimentary transfer functions. Here, we use high-resolution X-ray fluorescence core scanning of the Wilkins Peak Member of the Green River Formation to characterize the long-term evolution of transfer functions in an ancient lacustrine record. Our analysis identifies a shift in the frequency distribution of Milankovitch-band variance between the lower and middle Wilkins Peak Member across a range of temporally calibrated elemental intensity records. Spectral analysis of the lower Wilkins Peak Member shows strong short eccentricity, obliquity, precession, and sub-Milankovitch−scale variability, while the middle Wilkins Peak Member shows strong eccentricity variability and reduced power at higher frequencies. This transition coincides with a dramatic decline in the number and volume of evaporite beds. We attribute this shift to a change in the Wilkins Peak Member depositional transfer function caused by evolving basin morphology, which directly influenced the preservation of bedded evaporite as the paleolake developed from a deeper, meromictic lake to a shallower, holomictic lake. The loss of bedded evaporite, combined with secondary evaporite growth, results in reduced obliquity- and precession-band power and enhanced eccentricity-band power in the stratigraphic record. These results underscore the need for careful integration of basin and depositional system history with cyclostratigraphic interpretation of the dominant astronomical signals preserved in the stratigraphic archive. 
    more » « less
  4. Huang, Huasheng (Ed.)
    The fossil record of the U.S. Pacific Northwest preserves many Middle Miocene floras with potential for revealing long-term climate-vegetation dynamics during the Miocene Climatic Optimum. However, the possibility of strong, eccentricity-paced climate oscillations and concurrent, intense volcanism may obscure the signature of prevailing, long-term Miocene climate change. To test the hypothesis that volcanic disturbance drove Middle Miocene vegetation dynamics, high-resolution, stratigraphic pollen records and other paleobotanical data from nine localities of the Sucker Creek Formation were combined with sedimentological and geochemical evidence of disturbance within an updated chronostratigraphic framework based on new U-Pb zircon ages from tuffs. The new ages establish a refined, minimum temporal extent of the Sucker Creek Formation, ~15.8 to ~14.8 Ma, and greatly revise the local and regional chronostratigraphic correlations of its dispersed outcrop belt. Our paleoecological analysis at one ~15.52 Ma locality reveals two abrupt shifts in pollen spectra coinciding with the deposition of thick ash-flow tuffs, wherein vegetation dominated by Cupressaceae/Taxaceae, probably representing aGlyptostrobus oregonensisswamp, and upland conifers was supplanted by early-successional forests with abundantAlnusandBetula. Another ephemeral shift from Cupressaceae/Taxaceae swamp taxa in favor of upland conifersPinusandTsugacorrelates with a shift from low-Ti shale to high-Ti claystone, suggesting a link between altered surface hydrology and vegetation. In total, three rapid vegetation shifts coincide with ash-flow tuffs and are attributed to volcanic disturbance. Longer-term variability between localities, spanning ~1 Myr of the Miocene Climatic Optimum, is chiefly attributed to eccentricity-paced climate change. Overall, Succor Creek plant associations changed frequently over ≤105years timespans, reminiscent of Quaternary vegetation records. Succor Creek stratigraphic palynology suggests that numerous and extensive collection of stratigraphically controlled samples is necessary to understand broader vegetation trends through time. 
    more » « less
  5. Abstract Hillslope topographic change in response to climate and climate change is a key aspect of landscape evolution. The impact of short‐duration rainstorms on hillslope evolution in arid regions is persistently questioned but often not directly examined in landscape evolution studies, which are commonly based on mean climate proxies. This study focuses on hillslope surface processes responding to rainstorms in the driest regions of Earth. We present a numerical model for arid, rocky hillslopes with lithology of a softer rock layer capped by a cliff‐forming resistant layer. By representing the combined action of bedrock and clast weathering, cliff‐debris ravel, and runoff‐driven erosion, the model can reproduce commonly observed cliff‐profile morphology. Numerical experiments with a fixed base level were used to test hillslope response to cliff‐debris grain size, rainstorm intensities, and alternation between rainstorm patterns. The persistence of vertical cliffs and the pattern of sediment sorting depend on rainstorm intensities and the size of cliff debris. Numerical experiments confirm that these two variables could have driven the landscape in the Negev Desert (Israel) toward an observed spatial contrast in topographic form over the past 105–106 years. For a given total storm rain depth, short‐duration higher‐intensity rainstorms are more erosive, resulting in greater cliff retreat distances relative to longer, low‐intensity storms. Temporal alternation between rainstorm regimes produces hillslope profiles similar to those previously attributed to Quaternary oscillations in the mean climate. We suggest that arid hillslopes may undergo considerable geomorphic transitions solely by alternating intra‐storm patterns regardless of rainfall amounts. 
    more » « less