skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Literature Searching/Compiling/Understanding for Support of Student Research/Projects: A Dedicated Course Approach
Searching, compiling, understanding, and explaining the literature relative to one’s research or project represents an essential 21-st century skill for students. The innovation in the present work is that the full range of these diverse topics can be integrated and team taught, in a single unified course format. There is widespread awareness that the rapid advances in technology have greatly accelerated fundamental progress in science, engineering, and medicine as well as in the entrepreneurial development in these fields. Simultaneously, there have been, perhaps less publicized, advances in information science, database technology, literature searching tools, data compilation tools, and data sharing tools. To be competitive, students need to learn about and to incorporate these powerful tools into their research and engineering project work while they are in school and after graduation. Lessons learned in developing a productive academic research laboratory (Optics Laboratory at Georgia Tech) were used to formulate an inclusive suite of the needed topics and to introduce these via a course for undergraduate students to be team taught by an engineering professor and several librarians. After five offerings, this course has earned permanent listing. The resulting 2-credit hour elective “Research Methods” course has gotten high course evaluations. The course has enrolled not only the intended undergraduate students, but also has attracted graduate students, post-doctoral researchers, and faculty as well.  more » « less
Award ID(s):
1915971
PAR ID:
10316667
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
38
Issue:
2
ISSN:
2540-9808
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering educators have increasingly sought strategies for integrating the arts into their curricula. The primary objective of this integration varies, but one common objective is to improve students’ creative thinking skills. In this paper, we sought to quantify changes in student creativity that resulted from participation in a mechanical engineering course targeted at integrating engineering, technology, and the arts. The course was team taught by instructors from mechanical engineering and art. The art instructor introduced origami principles and techniques as a means for students to optimize engineering structures. Through a course project, engineering student teams interacted with art students to perform structural analysis on an origami-based art installation, which was the capstone project of the art instructor’s undergraduate origami course. Three engineering student teams extended this course project to collaborate with the art students in the final design and physical installation. 
    more » « less
  2. The Project-Based Scientific Research is a new interdisciplinary course developed by the National Science Foundation (NSF - IUSE) funded STEM center at _______ State University. The implementation of this new course was one of the major three goals for this five year grant to strengthen the STEM undergraduate research community at ______ State University by helping undergraduates who are interested in hands-on and/or scientific research. The course is designed to introduce undergraduate junior and senior science, engineering technology and math students to the vibrant world of real research; to build foundational skills for research; to help STEM students meet potential mentors whose research labs they might join with the goal of gaining experimental research experience while on campus. On top of course content and requirements the following goals are aimed for the student and faculty mentors to strengthen the research community; (1) helping undergraduate students who are interested in research connect with faculty partners who are committed to mentoring undergraduates in research, (2) to guide students in reading through papers that introduce the type of research being carried out in a faculty partners lab, (3) to guide students in drafting a mini-review of 5 papers relevant to that research, (4) to guide students in identifying and writing up a research proposal which they will complete in the lab of the faculty partner. The learning objectives for the students in this course are summarized as; (a) by the end of this course, all students build a foundational understanding of the principles of STEM research through the exploration and discussion of important historical interdisciplinary projects; (b) interact with faculty researchers who perform projects across STEM disciplines; (c) be able to describe the similarities and differences between experimental and theoretical STEM research; (d) explore and present several possibilities for future research topics; (e) design and present a research prospectus, complete with a review of some of the relevant literature; (f) and be prepared to continue a research project with a chosen faculty mentor or mentors. First year, six academic departments out of eight participated this new course by offering a cross-listed course for their students under one major course taught by one of the PIs at the STEM Center. All the details such as challenges faced, outcomes, resources used, faculty involved, student and faculty feedback etc. for this course will be shared with academia in the paper. 
    more » « less
  3. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State-Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  4. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  5. null (Ed.)
    Nanoscience and nanotechnology play a significant role in every field of our society. Nanotechnology is the backbone of high-tech industries and widely used in consumer products and industrial applications. Therefore, it is essential to highlight the importance of nanoscience and nanotechnology to undergraduate students and explain the science behind nanotechnology. For this purpose, an upper-level elective mechanical engineering course, Nanoscale Science and Engineering, is designed and added to the mechanical and mechatronic engineering curriculum. This course introduces students to the interdisciplinary field of nanoscience and engineering including the areas of engineering, materials science, chemistry, and physics. The topics covered include advanced materials, synthesis, and modification of nanomaterials, properties of nanomaterials, materials characterization, nanofabrication methods, and applications. It has three modules, which are formal lectures, guest speakers, and projects. Projects will help students learn to conduct a literature search, critically review scientific articles, and learn advanced materials characterization techniques on a given topic. They will further have a chance to propose their own ideas for potential applications and asked to give a detailed methodology to execute the project. In this work-in-progress study, we present the impact of the Nanoscale Science and Engineering course on undergraduate mechanical and mechatronic engineering students. Students were invited to complete a survey at the beginning of the semester, which will be also given to the students, at the end of the semester. The survey consists of 15 questions, which are aimed to analyze the pre-existing knowledge of students in nanotechnology-related topics and their interest level to increase their knowledge and advance their career in a nanotechnology-related field. In order to assess the impact of the course on students, the results of the survey will be compared. Student demographics will be included in the results. Possible changes in course content to improve student engagement in nanotechnology will be discussed. The purpose of this course is to introduce undergraduate engineering students to nanotechnology. The inclusion of Nanoscale Science and Engineering course to the undergraduate engineering curriculum has a significant role in the advancement of nanotechnology. Students graduating with a solid understanding of broad applications of nanotechnology and advanced material fabrication and characterization techniques will have a focused start in their graduate research and education or faster adaptation to nanotechnology-related industrial job positions. 
    more » « less