- Award ID(s):
- 1633426
- PAR ID:
- 10073094
- Date Published:
- Journal Name:
- 2018 ASEE Annual Conference and Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.more » « less
-
Engineering is becoming increasingly cross-disciplinary, requiring students to develop skills in multiple engineering disciplines (e.g., mechanical engineering students having to learn the basics of electronics, instrumentation, and coding) and interprofessional skills to integrate perspectives from people outside their field. In the workplace, engineering teams are frequently multidisciplinary, and often, people from outside of engineering are part of the team that brings a product to market. Additionally, teams are often diverse in age, race, gender, and in other areas. Teams that creatively utilize the contrasting perspectives and ideas arising from these differences can positively affect team performance and generate solutions effective for a broader range of users. These trends suggest that engineering education can benefit from having engineering students work on team projects that involve a blend of cross-disciplinary and mixed-aged collaborations. An NSF-funded project set out to explore this idea by partnering undergraduate engineering students enrolled in a 300-level electromechanical systems course with preservice teachers enrolled in a 400-level educational technology course to plan and deliver robotics lessons to fifth graders at a local school. Working in small teams, students designed, built, and coded bio-inspired robots. The collaborative activities included: (1) training with Hummingbird Bit hardware (Birdbrain Technologies, Pittsburgh, PA) (e.g. sensors, servo motors) and coding platform, (2) preparing robotics lessons for fifth graders that explained the engineering design process, and (3) guiding the fifth graders in the design of their robots. Additionally, each engineering student designed a robot following the theme developed with their education student and fifth-grade partners.more » « less
-
Abstract Although teamwork is being integrated throughout engineering education because of the perceived benefits of teams, the construct of psychological safety has been largely ignored in engineering research. This omission is unfortunate because psychological safety reflects collective perceptions about how comfortable team members feel in sharing their perspectives, and it has been found to positively impact team performance in samples outside of engineering. While prior research has indicated that psychological safety is positively related to team performance and outcomes, research related to psychological safety in engineering teams is less established. There is also a lack of comprehensive methodologies that capture the dynamic changes that occur throughout the design process and at each time point. In light of this, the goal of the current study was to understand how psychological safety might be measured practically and reliably in engineering student teams over time. In addition, we sought to identify factors that impact the building and waning of psychological safety in these teams over time. This was accomplished through a study with 260 engineering students in 68 teams in a first-year engineering design class. The psychological safety of the teams was captured for each team over five time points over the course of a semester long design project. The results of this study provide some of the first evidence on the reliability of psychological safety in engineering teams and offer insights as to how to support and improve psychological safety.more » « less
-
Freshman engineering students can have a hard time transitioning to college. The freshman year is critical to the students’ academic success; in this year they learn basic skills and establish essential networks with other students, faculty, and resources. How can we help these freshman engineering students in this transition? We propose that freshman students can learn from the engineering design innovation process and apply it by analogy to the design of their academic pathways. There are multiple similarities between product innovation (i.e., technology) and the continuous academic challenges faced by the student. Engineers as designers and innovators have a vast and rich repository of techniques, tools, and approaches to develop new technologies, and a parallelism can be drawn between the design and innovation of a technology (e.g., redesign of a kitchen appliance), and the “design” of the students’ academic career pathways. During the Spring 2023 semester pilot, students in Intro to Mechanical Engineering (Course A) worked in teams in a 6-week product innovation project to redesign a simple kitchen appliance. Students learned basic concepts of the design process (e.g., creative exploration of solutions, decision making, multi objective evaluation, etc.). These same students concurrently took Course B (Learning Frameworks) where they worked on a 6-week project to define their career pathways. Both projects, product innovation and career pathways, followed the Challenge Based Instruction (CBI) approach. Periodically, participant students were shown how to use the lessons from product innovation by analogy and reflection in their career pathways project. The objective is for students to learn about the engineering design process and to apply it to their academic challenges by analogy. This prepares students with meta skills to help solve future problems in their academic path, and at each iteration, the students transform themselves, hence the use of the term self-transformation (also referred as “self-innovation”). Data collected from pre and post surveys will be presented to measure self-efficacy in engineering design, grit, motivation to learn, and STEM identity. Participant interviews provide a qualitative insight into the intervention. This project is funded by NSF award 2225247.more » « less
-
Abstract Background Project‐based learning has shown promise in improving learning outcomes for diverse students. However, studies on its impacts have largely focused on the perceptions of students and instructors or students' immediate performance. This study reports the impact of taking a project‐based introductory engineering course on students' subsequent academic success.
Purpose/Hypothesis This quantitative study examines characteristics related to enrollment in the project‐based introductory engineering course and subsequent academic performance. We hypothesized that participation in the course would be associated with higher academic performance in subsequent engineering courses. In addition, we examined heterogeneity effects for students traditionally underrepresented in engineering education.
Design/Method This study utilized data on students' demographics, academic preparation, course enrollment, and course performance from 1,318 engineering students from a large public university in Southern California. Logistic regression analysis with robust standard errors examined enrollment patterns. We applied propensity scores as inverse‐probability weights in multiple linear models to calculate the average treatment effect on the treated for participants from the project‐based introductory engineering course in five subsequent engineering courses. This analysis was conducted for all students and for selected student subgroups.
Results Enrollment in the project‐based introductory engineering course was positively associated with students' performance in some subsequent engineering courses and did not adversely affect students traditionally underrepresented in engineering.
Conclusions This study provides an example of a project‐based introductory engineering course that can support students' academic success in engineering. The benefits detected for some student populations (e.g., female) are encouraging for broadening engineering pathways.