skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polarimetric Observations and Simulations of Sublimating Snow: Implications for Nowcasting
Abstract Snow sublimating in dry air is a forecasting challenge and can delay the onset of surface snowfall and affect storm-total accumulations. Despite this, it remains comparatively less studied than other microphysical processes. Herein, the characteristics of sublimating snow and the potential for nowcasting snowfall reaching the surface are explored through the use of dual-polarization radar. Twelve cases featuring prolific sublimation were analyzed using range-defined quasi-vertical profiles (RDQVPs) and compared with environmental model analyses. Overall, reflectivity Z significantly decreases, differential reflectivity Z DR slightly decreases, and copolar-correlation coefficient ρ hv remains nearly constant through the sublimation layer. Regions of enhanced specific differential phase K dp were frequently observed in the sublimation layer and are believed to be polarimetric evidence of secondary ice production via sublimation. A 1D bin model was initialized using particle size distributions retrieved from the RDQVPs using numerous novel polarimetric snowretrieval relations for a wide range of forecast lead times, with the model environment evolving in response to sublimation. It was found that the model was largely able to predict the snowfall start time up to six hours in advance, with a 6-h median bias of just -18.5 minutes. A more detailed case study of the 08 December 2013 snowstorm in the Philadelphia region was also performed, demonstrating good correspondence with observations and examples of model fields (e.g., cooling rate) hypothetically available from such a tool. The proof-of-concept results herein demonstrate the potential benefits of incorporating spatially averaged radar data in conjunction with simple 1D models into the nowcasting process.  more » « less
Award ID(s):
1841246
PAR ID:
10316689
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
ISSN:
1558-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quasi-vertical profiles (QVPs) of polarimetric radar data have emerged as a powerful tool for studying precipitation microphysics. Various studies have found enhancements in specific differential phase K dp in regions of suspected secondary ice production (SIP) due to rime splintering. Similar K dp enhancements have also been found in regions of sublimating snow, another proposed SIP process. This work explores these K dp signatures for two cases of sublimating snow using nearly collocated S- and Ka-band radars. The presence of the signature was inconsistent between the radars, prompting exploration of alternative causes. Idealized simulations are performed using a radar beam-broadening model to explore the impact of nonuniform beam filling (NBF) on the observed reflectivity Z and K dp within the sublimation layer. Rather than an intrinsic increase in ice concentration, the observed K dp enhancements can instead be explained by NBF in the presence of sharp vertical gradients of Z and K dp within the sublimation zone, which results in a K dp bias dipole. The severity of the bias is sensitive to the Z gradient and radar beamwidth and elevation angle, which explains its appearance at only one radar. In addition, differences in scanning strategies and range thresholds during QVP processing can constructively enhance these positive K dp biases by excluding the negative portion of the dipole. These results highlight the need to consider NBF effects in regions not traditionally considered (e.g., in pure snow) due to the increased K dp fidelity afforded by QVPs and the subsequent ramifications this has on the observability of sublimational SIP. Significance Statement Many different processes can cause snowflakes to break apart into numerous tiny pieces, including when they evaporate into dry air. Purported evidence of this phenomenon has been seen in data from some weather radars, but we noticed it was not seen in data from others. In this work we use case studies and models to show that this signature may actually be an artifact from the radar beam becoming too big and there being too much variability of the precipitation within it. While this breakup process may actually be occurring in reality, these results suggest we may have trouble observing it with typical weather radars. 
    more » « less
  2. null (Ed.)
    Abstract In a 2018 paper by Bukovčić et al., polarimetric bivariate power-law relations for estimating snowfall rate S and ice water content (IWC), and , were developed utilizing 2D video disdrometer snow measurements in Oklahoma. Herein, these disdrometer-based relations are generalized for the range of particle aspect ratios from 0.5 to 0.8 and the width of the canting angle distribution from 0° to 40° and are validated via analytical/theoretical derivations and simulations. In addition, a novel S ( K DP , Z dr ) polarimetric relation utilizing the ratio between specific differential phase K DP and differential reflectivity Z dr , , is derived. Both K DP and are proportionally affected by the ice particles’ aspect ratio and width of the canting angle distribution; therefore, the variables’ ratio tends to be almost invariant to the changes in these parameters. The S ( K DP , Z ) and S ( K DP , Z dr ) relations are applied to the polarimetric S-band WSR-88D data obtained from three geographical locations in Virginia, Oklahoma, and Colorado, and their performance is compared with estimations from the standard S ( Z ) relations and ground snow measurements. The polarimetric estimates of snow accumulations from the three cases exhibit smaller bias in comparison with the S ( Z ), indicating good potential for more reliable radar snow measurements. 
    more » « less
  3. null (Ed.)
    Abstract A polarimetric radar–based method for retrieving atmospheric ice particle shapes is applied to snowfall measurements by a scanning K a -band radar deployed at Oliktok Point, Alaska (70.495°N, 149.883°W). The mean aspect ratio, which is defined by the hydrometeor minor-to-major dimension ratio for a spheroidal particle model, is retrieved as a particle shape parameter. The radar variables used for aspect ratio profile retrievals include reflectivity, differential reflectivity, and the copolar correlation coefficient. The retrievals indicate that hydrometeors with mean aspect ratios below 0.2–0.3 are usually present in regions with air temperatures warmer than approximately from −17° to −15°C, corresponding to a regime that has been shown to be favorable for growth of pristine ice crystals of planar habits. Radar reflectivities corresponding to the lowest mean aspect ratios are generally between −10 and 10 dB Z . For colder temperatures, mean aspect ratios are typically in a range between 0.3 and 0.8. There is a tendency for hydrometeor aspect ratios to increase as particles transition from altitudes in the temperature range from −17° to −15°C toward the ground. This increase is believed to result from aggregation and riming processes that cause particles to become more spherical and is associated with areas demonstrating differential reflectivity decreases with increasing reflectivity. Aspect ratio retrievals at the lowest altitudes are consistent with in situ measurements obtained using a surface-based multiangle snowflake camera. Pronounced gradients in particle aspect ratio profiles are observed at altitudes at which there is a change in the dominant hydrometeor species, as inferred by spectral measurements from a vertically pointing Doppler radar. 
    more » « less
  4. Abstract Dual-frequency millimeter-wavelength radar observations in snowfall are analyzed in order to evaluate differences in conventional polarimetric radar variables such as differential reflectivity ( Z DR ) specific differential phase shift ( K DP ) and linear depolarization ratio (LDR) at traditional cloud radar frequencies at Ka and W bands (~35 and ~94 GHz, correspondingly). Low radar beam elevation (~5°) measurements were performed at Oliktok Point, Alaska, with a scanning fully polarimetric radar operating in the horizontal–vertical polarization basis. This radar has the same gate spacing and very close beam widths at both frequencies, which largely alleviates uncertainties associated with spatial and temporal data matching. It is shown that observed Ka- and W-band Z DR differences are, on average, less than about 0.5 dB and do not have a pronounced trend as a function of snowfall reflectivity. The observed Z DR differences agree well with modeling results obtained using integration over nonspherical ice particle size distributions. For higher signal-to-noise ratios, K DP data derived from differential phase measurements are approximately scaled as reciprocals of corresponding radar frequencies indicating that the influence of non-Rayleigh scattering effects on this variable is rather limited. This result is also in satisfactory agreement with data obtained by modeling using realistic particle size distributions. Observed Ka- and W-band LDR differences are strongly affected by the radar hardware system polarization “leak” and are generally less than 4 dB. Smaller differences are observed for higher depolarizations, where the polarization “leak” is less pronounced. Realistic assumptions about particle canting and the system polarization isolation lead to modeling results that satisfactorily agree with observational dual-frequency LDR data. 
    more » « less
  5. Abstract Recent studies from the Seeded and Natural Orographic Wintertime Clouds: The Idaho Experiment (SNOWIE) demonstrated definitive radar evidence of seeding signatures in winter orographic clouds during three intensive operation periods (IOPs) where the background signal from natural precipitation was weak and a radar signal attributable to seeding could be identified as traceable seeding lines. Except for the three IOPs where seeding was detected, background natural snowfall was present during seeding operations and no clear seeding signatures were detected. This paper provides a quantitative analysis to assess if orographic cloud seeding effects are detectable using radar when background precipitation is present. We show that a 5-dB change in equivalent reflectivity factorZeis required to stand out against background naturalZevariability. This analysis considers four radar wavelengths, a range of background ice water contents (IWC) from 0.012 to 1.214 g m−3, and additional IWC introduced by seeding ranging from 0.012 to 0.486 g m−3. The upper-limit values of seeded IWC are based on measurements of IWC from the Nevzorov probe employed on the University of Wyoming King Air aircraft during SNOWIE. This analysis implies that seeding effects will be undetectable using radar within background snowfall unless the background IWC is small, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Significance StatementOperational glaciogenic seeding programs targeting wintertime orographic clouds are funded by a range of stakeholders to increase snowpack. Glaciogenic seeding signatures have been observed by radar when natural background snowfall is weak but never when heavy background precipitation was present. This analysis quantitatively shows that seeding effects will be undetectable using radar reflectivity under conditions of background snowfall unless the background snowfall is weak, and the seeding effects are large. It therefore remains uncertain whether seeding had no effect on cloud microstructure, and therefore produced no signature on radar, or whether seeding did have an effect, but that effect was undetectable against the background reflectivity associated with naturally produced precipitation. Alternative assessment methods such as trace element analysis in snow, aircraft measurements, precipitation measurements, and modeling should be used to determine the efficacy of orographic cloud seeding when heavy background precipitation is present. 
    more » « less