skip to main content


Title: Privately Publishable Per-instance Privacy
We consider how to privately share the personalized privacy losses incurred by objective perturbation, using per-instance differential privacy (pDP). Standard differential privacy (DP) gives us a worst-case bound that might be orders of magnitude larger than the privacy loss to a particular individual relative to a fixed dataset. The pDP framework provides a more fine-grained analysis of the privacy guarantee to a target individual, but the per-instance privacy loss itself might be a function of sensitive data. In this paper, we analyze the per-instance privacy loss of releasing a private empirical risk minimizer learned via objective perturbation, and propose a group of methods to privately and accurately publish the pDP losses at little to no additional privacy cost.  more » « less
Award ID(s):
2048091
NSF-PAR ID:
10316709
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the arena of privacy-preserving machine learning, differentially private stochastic gradient descent (DP-SGD) has outstripped the objective perturbation mechanism in popularity and interest. Though unrivaled in versatility, DP-SGD requires a non-trivial privacy overhead (for privately tuning the model’s hyperparameters) and a computational complexity which might be extravagant for simple models such as linear and logistic regression. This paper revamps the objective perturbation mechanism with tighter privacy analyses and new computational tools that boost it to perform competitively with DP-SGD on unconstrained convex generalized linear problems. 
    more » « less
  2. Data perturbation is a technique for generating synthetic data by adding ‘noise’ to raw data, which has an array of applications in science and engineering, primarily in data security and privacy. One challenge for data perturbation is that it usually produces synthetic data resulting in information loss at the expense of privacy protection. The information loss, in turn, renders the accuracy loss for any statistical or machine learning method based on the synthetic data, weakening downstream analysis and deteriorating in machine learning. In this article, we introduce and advocate a fundamental principle of data perturbation, which requires the preservation of the distribution of raw data. To achieve this, we propose a new scheme, named data flush, which ascertains the validity of the downstream analysis and maintains the predictive accuracy of a learning task. It perturbs data nonlinearly while accommodating the requirement of strict privacy protection, for instance, differential privacy. We highlight multiple facets of data flush through examples. 
    more » « less
  3. Abstract Background

    A considerable amount of various types of data have been collected during the COVID-19 pandemic, the analysis and understanding of which have been indispensable for curbing the spread of the disease. As the pandemic moves to an endemic state, the data collected during the pandemic will continue to be rich sources for further studying and understanding the impacts of the pandemic on various aspects of our society. On the other hand, naïve release and sharing of the information can be associated with serious privacy concerns.

    Methods

    We use three common but distinct data types collected during the pandemic (case surveillance tabular data, case location data, and contact tracing networks) to illustrate the publication and sharing of granular information and individual-level pandemic data in a privacy-preserving manner. We leverage and build upon the concept of differential privacy to generate and release privacy-preserving data for each data type. We investigate the inferential utility of privacy-preserving information through simulation studies at different levels of privacy guarantees and demonstrate the approaches in real-life data. All the approaches employed in the study are straightforward to apply.

    Results

    The empirical studies in all three data cases suggest that privacy-preserving results based on the differentially privately sanitized data can be similar to the original results at a reasonably small privacy loss ($$\epsilon \approx 1$$ϵ1). Statistical inferences based on sanitized data using the multiple synthesis technique also appear valid, with nominal coverage of 95% confidence intervals when there is no noticeable bias in point estimation. When$$\epsilon <1$$ϵ<1 and the sample size is not large enough, some privacy-preserving results are subject to bias, partially due to the bounding applied to sanitized data as a post-processing step to satisfy practical data constraints.

    Conclusions

    Our study generates statistical evidence on the practical feasibility of sharing pandemic data with privacy guarantees and on how to balance the statistical utility of released information during this process.

     
    more » « less
  4. null (Ed.)
    In this paper we consider the problem of minimizing composite objective functions consisting of a convex differentiable loss function plus a non-smooth regularization term, such as $L_1$ norm or nuclear norm, under Rényi differential privacy (RDP). To solve the problem, we propose two stochastic alternating direction method of multipliers (ADMM) algorithms: ssADMM based on gradient perturbation and mpADMM based on output perturbation. Both algorithms decompose the original problem into sub-problems that have closed-form solutions. The first algorithm, ssADMM, applies the recent privacy amplification result for RDP to reduce the amount of noise to add. The second algorithm, mpADMM, numerically computes the sensitivity of ADMM variable updates and releases the updated parameter vector at the end of each epoch. We compare the performance of our algorithms with several baseline algorithms on both real and simulated datasets. Experimental results show that, in high privacy regimes (small ε), ssADMM and mpADMM outperform baseline algorithms in terms of classification and feature selection performance, respectively. 
    more » « less
  5. Larochelle, Hugo ; Hadsell, Raia ; Cho, Kyunghyun (Ed.)
    In deep learning, leveraging transfer learning has recently been shown to be an effective strategy for training large high performance models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on using first-order differentially private training algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is often low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that least-squares linear regression is much more effective than logistic regression from both privacy and computational standpoint, especially at stricter epsilon values (ε < 1). On the optimization side, we also explore using Newton’s method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is more effective at lower epsilon values while Newton’s method is more effective at larger epsilon values. To combine the benefits of both methods, we propose a novel optimization algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ε values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ε typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88% under DP guarantee of (8, 8 ∗ 10−7) and 84.3% under (0.1, 8 ∗ 10−7). 
    more » « less