skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Flush
Data perturbation is a technique for generating synthetic data by adding ‘noise’ to raw data, which has an array of applications in science and engineering, primarily in data security and privacy. One challenge for data perturbation is that it usually produces synthetic data resulting in information loss at the expense of privacy protection. The information loss, in turn, renders the accuracy loss for any statistical or machine learning method based on the synthetic data, weakening downstream analysis and deteriorating in machine learning. In this article, we introduce and advocate a fundamental principle of data perturbation, which requires the preservation of the distribution of raw data. To achieve this, we propose a new scheme, named data flush, which ascertains the validity of the downstream analysis and maintains the predictive accuracy of a learning task. It perturbs data nonlinearly while accommodating the requirement of strict privacy protection, for instance, differential privacy. We highlight multiple facets of data flush through examples.  more » « less
Award ID(s):
1952539
PAR ID:
10463050
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Harvard Data Science Review
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A large amount of data is often needed to train machine learning algorithms with confidence. One way to achieve the necessary data volume is to share and combine data from multiple parties. On the other hand, how to protect sensitive personal information during data sharing is always a challenge. We focus on data sharing when parties have overlapping attributes but non-overlapping individuals. One approach to achieve privacy protection is through sharing differentially private synthetic data. Each party generates synthetic data at its own preferred privacy budget, which is then released and horizontally merged across the parties. The total privacy cost for this approach is capped at the maximum individual budget employed by a party. We derive the mean squared error bounds for the parameter estimation in common regression analysis based on the merged sanitized data across parties. We identify through theoretical analysis the conditions under which the utility of sharing and merging sanitized data outweighs the perturbation introduced for satisfying differential privacy and surpasses that based on individual party data. The experiments suggest that sanitized HOMM data obtained at a practically reasonable small privacy cost can lead to smaller prediction and estimation errors than individual parties, demonstrating the benefits of data sharing while protecting privacy. 
    more » « less
  2. Lee, Kyoung Mu (Ed.)
    This paper introduces a novel Perturbation-Assisted Inference (PAI) framework utilizing synthetic data generated by the Perturbation-Assisted Sample Synthesis (PASS) method. The framework focuses on uncertainty quantification in complex data scenarios, particularly involving unstructured data while utilizing deep learning models. On one hand, PASS employs a generative model to create synthetic data that closely mirrors raw data while preserving its rank properties through data perturbation, thereby enhancing data diversity and bolstering privacy. By incorporating knowledge transfer from large pretrained generative models, PASS enhances estimation accuracy, yielding refined distributional estimates of various statistics via Monte Carlo experiments. On the other hand, PAI boasts its statistically guaranteed validity. In pivotal inference, it enables precise conclusions even without prior knowledge of the pivotal’s distribution. In non-pivotal situations, we enhance the reliability of synthetic data generation by training it with an independent holdout sample. We demonstrate the effectiveness of PAI in advancing uncertainty quantification in complex, data-driven tasks by applying it to diverse areas such as image synthesis, sentiment word analysis, multimodal inference, and the construction of prediction intervals. 
    more » « less
  3. Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other. However, data locality does not provide sufficient privacy protection, and it is desirable to facilitate FL with rigorous differential privacy (DP) guarantee. Existing DP mechanisms would introduce random noise with magnitude proportional to the model size, which can be quite large in deep neural networks. In this paper, we propose a new FL framework with sparsification-amplified privacy. Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee. Since sparsification would increase the number of communication rounds required to achieve a certain target accuracy, which is unfavorable for DP guarantee, we further introduce acceleration techniques to help reduce the privacy cost. We rigorously analyze the convergence of our approach and utilize Renyi DP to tightly account the end-to-end DP guarantee. Extensive experiments on benchmark datasets validate that our approach outperforms previous differentially-private FL approaches in both privacy guarantee and communication efficiency. 
    more » « less
  4. Federated learning (FL) is a distributed learning paradigm that allows multiple decentralized clients to collaboratively learn a common model without sharing local data. Although local data is not exposed directly, privacy concerns nonetheless exist as clients' sensitive information can be inferred from intermediate computations. Moreover, such information leakage accumulates substantially over time as the same data is repeatedly used during the iterative learning process. As a result, it can be particularly difficult to balance the privacy-accuracy trade-off when designing privacy-preserving FL algorithms. This paper introduces Upcycled-FL, a simple yet effective strategy that applies first-order approximation at every even round of model update. Under this strategy, half of the FL updates incur no information leakage and require much less computational and transmission costs. We first conduct the theoretical analysis on the convergence (rate) of Upcycled-FL and then apply two perturbation mechanisms to preserve privacy. Extensive experiments on both synthetic and real-world data show that the Upcycled-FL strategy can be adapted to many existing FL frameworks and consistently improve the privacy-accuracy trade-off 
    more » « less
  5. With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners or the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes. 
    more » « less