skip to main content


Title: Learning and Strongly Truthful Multi-Task Peer Prediction: A Variational Approach
Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task setting, agents are asked to respond to multiple independent and identically distributed tasks, and the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an epsilon-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other strategy profile (with epsilon additive error) even for heterogeneous agents, and to do so while requiring as few tasks as possible. We design a family of mechanisms with a scoring function that maps a pair of reports to a score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the mechanism is epsilon-strongly truthful as long as the scoring function used is sufficiently close to the ideal scoring function. This reduces the above mechanism design problem to a learning problem – specifically learning an ideal scoring function. Because learning the prior distribution is sufficient (but not necessary) to learn the scoring function, we can apply standard learning theory techniques that leverage side information about the prior (e.g., that it is close to some parametric model). Furthermore, we derive a variational representation of an ideal scoring function and reduce the learning problem into an empirical risk minimization. We leverage this reduction to obtain very general results for peer prediction in the multi-task setting. Specifically, Sample Complexity. We show how to derive good bounds on the number of tasks required for different types of priors–in some cases exponentially improving previous results. In particular, we can upper bound the required number of tasks for parametric models with bounded learning complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To the best of our knowledge, this is the first peer-prediction mechanism on continuous signals designed for the multi-task setting. Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given the other agents’ signals) into a mechanism. This allows the practical use of machine learning algorithms that give good results even when many agents provide noisy information. Stronger Properties. In the finite setting, we obtain -strongly truthful mechanisms for any stochastically relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker notion of truthfulness (informed truthfulness).  more » « less
Award ID(s):
2007256
NSF-PAR ID:
10316786
Author(s) / Creator(s):
;
Date Published:
Journal Name:
12th Innovations in Theoretical Computer Science Conference (ITCS 2021)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We initiate the study of information elicitation mechanisms for a crowd containing both self-interested agents, who respond to incentives, and adversarial agents, who may collude to disrupt the system. Our mechanisms work in the peer prediction setting where ground truth need not be accessible to the mechanism or even exist. We provide a meta-mechanism that reduces the design of peer prediction mechanisms to a related robust learning problem. The resulting mechanisms are ϵ-informed truthful, which means truth-telling is the highest paid ϵ-Bayesian Nash equilibrium (up to ϵ-error) and pays strictly more than uninformative equilibria. The value of ϵ depends on the properties of robust learning algorithm, and typically limits to 0 as the number of tasks and agents increase. We show how to use our meta-mechanism to design mechanisms with provable guarantees in two important crowdsourcing settings even when some agents are self-interested and others are adversarial. 
    more » « less
  2. Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables from strategic agents when the principal can reward agents after the realization of the random variables. They also quantify the quality of elicited information, with more accurate predictions receiving higher scores in expectation. In this paper, we extend such scoring rules to settings where a principal elicits private probabilistic beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules (SSR). SSR is built on a bias correction step and an error rate estimation procedure for a reference answer defined using agents’ reports. We show that, with a little information about the prior distribution of the random variables, SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground truth. Therefore, a salient feature of SSR is that they quantify the quality of information despite the lack of ground truth, just as SPSR do for the setting with ground truth. As a by-product, SSR induce dominant uniform strategy truthfulness in reporting. Our method is verified both theoretically and empirically using data collected from real human forecasters. 
    more » « less
  3. In many societal resource allocation domains, machine learning methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively audit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations. 
    more » « less
  4. Peer prediction refers to a collection of mechanisms for eliciting information from human agents when direct verification of the obtained information is unavailable. They are designed to have a game-theoretic equilibrium where everyone reveals their private information truthfully. This result holds under the assumption that agents are Bayesian and they each adopt a fixed strategy across all tasks. Human agents however are observed in many domains to exhibit learning behavior in sequential settings. In this paper, we explore the dynamics of sequential peer prediction mechanisms when participants are learning agents. We first show that the notion of no regret alone for the agents’ learning algorithms cannot guaran- tee convergence to the truthful strategy. We then focus on a family of learning algorithms where strategy updates only depend on agents’ cumulative rewards and prove that agents’ strategies in the popular Correlated Agreement (CA) mechanism converge to truthful reporting when they use algorithms from this family. This fam- ily of algorithms is not necessarily no-regret, but includes several familiar no-regret learning algorithms (e.g multiplicative weight update and Follow the Perturbed Leader) as special cases. Simulation of several algorithms in this family as well as the ε-greedy algorithm, which is outside of this family, shows convergence to the truthful strategy in the CA mechanism. 
    more » « less
  5. null (Ed.)
    In many societal resource allocation domains, machine learn- ing methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively au- dit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations. 
    more » « less