skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Multitask Peer Prediction With Task-dependent Strategies
Peer prediction aims to incentivize truthful reports from agents whose reports cannot be assessed with any objective ground truthful information. In the multi-task setting where each agent is asked multiple questions, a sequence of mechanisms have been proposed which are truthful — truth-telling is guaranteed to be an equilibrium, or even better, informed truthful — truth-telling is guaranteed to be one of the best-paid equilibria. However, these guarantees assume agents’ strategies are restricted to be task-independent: an agent’s report on a task is not affected by her information about other tasks. We provide the first discussion on how to design (informed) truthful mechanisms for task-dependent strategies, which allows the agents to report based on all her information on the assigned tasks. We call such stronger mechanisms (informed) omni-truthful. In particular, we propose the joint-disjoint task framework, a new paradigm which builds upon the previous penalty-bonus task framework. First, we show a natural reduction from mechanisms in the penalty-bonus task framework to mechanisms in the joint-disjoint task framework that maps every truthful mechanism to an omni-truthful mechanism. Such a reduction is non-trivial as we show that current penalty-bonus task mechanisms are not, in general, omni-truthful. Second, for a stronger truthful guarantee, we design the matching agreement (MA) mechanism which is informed omni-truthful. Finally, for the MA mechanism in the detail-free setting where no prior knowledge is assumed, we show how many tasks are required to (approximately) retain the truthful guarantees.  more » « less
Award ID(s):
2007256
NSF-PAR ID:
10536748
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450394161
Page Range / eLocation ID:
3436 to 3446
Format(s):
Medium: X
Location:
Austin TX USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Peer prediction mechanisms incentivize self-interested agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with their peers. We propose two new mechanisms, Source and Target Differential Peer Prediction, and prove very strong guarantees for a very general setting. Our Differential Peer Prediction mechanisms are strongly truthful: Truth-telling is a strict Bayesian Nash equilibrium. Also, truth-telling pays strictly higher than any other equilibria, excluding permutation equilibria, which pays the same amount as truth-telling. The guarantees hold for asymmetric priors among agents, which the mechanisms need not know (detail-free) in the single question setting. Moreover, they only require three agents, each of which submits a single item report: two report their signals (answers), and the other reports her forecast (prediction of one of the other agent’s reports). Our proof technique is straightforward, conceptually motivated, and turns on the logarithmic scoring rule’s special properties. Moreover, we can recast the Bayesian Truth Serum mechanism into our framework. We can also extend our results to the setting of continuous signals with a slightly weaker guarantee on the optimality of the truthful equilibrium. 
    more » « less
  2. null (Ed.)
    Peer prediction mechanisms incentivize agents to truthfully report their signals even in the absence of verification by comparing agents’ reports with those of their peers. In the detail-free multi-task setting, agents are asked to respond to multiple independent and identically distributed tasks, and the mechanism does not know the prior distribution of agents’ signals. The goal is to provide an epsilon-strongly truthful mechanism where truth-telling rewards agents “strictly” more than any other strategy profile (with epsilon additive error) even for heterogeneous agents, and to do so while requiring as few tasks as possible. We design a family of mechanisms with a scoring function that maps a pair of reports to a score. The mechanism is strongly truthful if the scoring function is “prior ideal”. Moreover, the mechanism is epsilon-strongly truthful as long as the scoring function used is sufficiently close to the ideal scoring function. This reduces the above mechanism design problem to a learning problem – specifically learning an ideal scoring function. Because learning the prior distribution is sufficient (but not necessary) to learn the scoring function, we can apply standard learning theory techniques that leverage side information about the prior (e.g., that it is close to some parametric model). Furthermore, we derive a variational representation of an ideal scoring function and reduce the learning problem into an empirical risk minimization. We leverage this reduction to obtain very general results for peer prediction in the multi-task setting. Specifically, Sample Complexity. We show how to derive good bounds on the number of tasks required for different types of priors–in some cases exponentially improving previous results. In particular, we can upper bound the required number of tasks for parametric models with bounded learning complexity. Furthermore, our reduction applies to myriad continuous signal space settings. To the best of our knowledge, this is the first peer-prediction mechanism on continuous signals designed for the multi-task setting. Connection to Machine Learning. We show how to turn a soft-predictor of an agent’s signals (given the other agents’ signals) into a mechanism. This allows the practical use of machine learning algorithms that give good results even when many agents provide noisy information. Stronger Properties. In the finite setting, we obtain -strongly truthful mechanisms for any stochastically relevant prior. Prior works either only apply to more restrictive settings, or achieve a weaker notion of truthfulness (informed truthfulness). 
    more » « less
  3. We initiate the study of information elicitation mechanisms for a crowd containing both self-interested agents, who respond to incentives, and adversarial agents, who may collude to disrupt the system. Our mechanisms work in the peer prediction setting where ground truth need not be accessible to the mechanism or even exist. We provide a meta-mechanism that reduces the design of peer prediction mechanisms to a related robust learning problem. The resulting mechanisms are ϵ-informed truthful, which means truth-telling is the highest paid ϵ-Bayesian Nash equilibrium (up to ϵ-error) and pays strictly more than uninformative equilibria. The value of ϵ depends on the properties of robust learning algorithm, and typically limits to 0 as the number of tasks and agents increase. We show how to use our meta-mechanism to design mechanisms with provable guarantees in two important crowdsourcing settings even when some agents are self-interested and others are adversarial. 
    more » « less
  4. null (Ed.)
    Motivated by kidney exchange, we study the following mechanism-design problem: On a directed graph (of transplant compatibilities among patient--donor pairs), the mechanism must select a simple path (a chain of transplantations) starting at a distinguished vertex (an altruistic donor) such that the total length of this path is as large as possible (a maximum number of patients receive a kidney). However, the mechanism does not have direct access to the graph. Instead, the vertices are partitioned over multiple players (hospitals), and each player reports a subset of her vertices to the mechanism. In particular, a player may strategically omit vertices to increase how many of her vertices lie on the path returned by the mechanism. Our objective is to find mechanisms that limit incentives for such manipulation while producing long paths. Unfortunately, in worst-case instances, competing with the overall longest path is impossible while incentivizing (approximate) truthfulness, i.e., requiring that hiding nodes cannot increase a player's utility by more than a factor of 1 + o(1). We therefore adopt a semi-random model where o(n) random edges are added to worst-case instances. While it remains impossible for truthful mechanisms to compete with the overall longest path, we give a truthful mechanism that competes with a weaker but non-trivial benchmark: the length of any path whose subpaths within each player have a minimum average length. In fact, our mechanism satisfies even a stronger notion of truthfulness, which we call matching-time incentive compatibility. This notion of truthfulness requires that each player not only reports her nodes truthfully but also does not stop the returned path at any of her nodes in order to divert it to a continuation inside her own subgraph. 
    more » « less
  5. A cache memory unit needs to be shared among n strategic agents. Each agent has different preferences over the files to be brought into memory. The goal is to design a mechanism that elicits these preferences in a truthful manner and outputs a fair and efficient memory allocation. A trivially truthful and fair solution would isolate each agent to a 1/n fraction of the memory. However, this could be very inefficient if the agents have similar preferences and, thus, there is room for cooperation. On the other hand, if the agents are not isolated, unless the mechanism is carefully designed, they have incentives to misreport their preferences and free ride on the files that others bring into memory. In this paper we explore the power and limitations of truthful mechanisms in this setting.We demonstrate that mechanisms blocking agents from accessing parts of the memory can achieve improved efficiency guarantees, despite the inherent inefficiencies of blocking. 
    more » « less