skip to main content


Title: Structurally distributed surface sites tune allosteric regulation
Many proteins exhibit a property called ‘allostery’. In allostery, an input signal at a specific site of a protein – such as a molecule binding, or the protein absorbing a photon of light – leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein ‘remote control’ allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a ‘sensor’ or input region from one protein with an ‘output’ region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is ‘on’ versus ‘off’ is often small, a situation called ‘modest allostery’. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the ‘on’ and ‘off’ states. More specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the ‘input’ and ‘output’ domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the ‘output’ domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the ‘input’ domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the ‘output’ domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.’s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric ‘switches’ look like.  more » « less
Award ID(s):
1942354
NSF-PAR ID:
10316787
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Billions of years ago, the Earth’s atmosphere had very little oxygen. It was only after some bacteria and early plants evolved to harness energy from sunlight that oxygen began to fill the Earth’s environment. Oxygen is highly reactive and can interfere with enzymes and other molecules that are essential to life. Organisms living at this point in history therefore had to adapt to survive in this new oxygen-rich world. An ancient family of enzymes known as ribonucleotide reductases are used by all free-living organisms and many viruses to repair and replicate their DNA. Because of their essential role in managing DNA, these enzymes have been around on Earth for billions of years. Understanding how they evolved could therefore shed light on how nature adapted to increasing oxygen levels and other environmental changes at the molecular level. One approach to study how proteins evolved is to use computational analysis to construct a phylogenetic tree. This reveals how existing members of a family are related to one another based on the chain of molecules (known as amino acids) that make up each protein. Despite having similar structures and all having the same function, ribonucleotide reductases have remarkably diverse sequences of amino acids. This makes it computationally very demanding to build a phylogenetic tree. To overcome this, Burnim, Spence, Xu et al. created a phylogenetic tree using structural information from a part of the enzyme that is relatively similar in many modern-day ribonucleotide reductases. The final result took seven continuous months on a supercomputer to generate, and includes over 6,000 members of the enzyme family. The phylogenetic tree revealed a new distinct group of ribonucleotide reductases that may explain how one adaptation to increasing levels of oxygen emerged in some family members, while another adaptation emerged in others. The approach used in this work also opens up a new way to study how other highly diverse enzymes and other protein families evolved, potentially revealing new insights about our planet’s past. 
    more » « less
  2. Motor proteins are the freight trains of the cell, transporting large molecular cargo from one location to another using an array of ‘roads’ known as microtubules. These hollow tubes are oriented, with one extremity (the plus-end) growing faster than the other (the minus-end). While over 40 different motor proteins travel towards the plus-end of microtubules, just one is responsible for moving cargo in the opposite direction. This protein, called dynein, performs a wide range of functions which must be carefully regulated, often through changes in the shape and interactions of various dynein segments. The intermediate chain is one of the essential subunits that form dynein, and it acts as a binding site for a range of molecular actors. In particular, it connects the three other dynein subunits (known as the light chains) to the dynein heavy chain containing the motor domain. It also binds to two non-dynein proteins: NudE, which helps to organise microtubules, and the p150 Glued region of dynactin, a protein required for dynein activity. Despite their distinct roles, p150 Glued and NudE attach to the same region of the intermediate chain, a highly flexible ‘unstructured’ segment which is difficult to study. How the binding of p150 Glued and NudE is regulated has therefore remained unsolved. In response, Jara et al. decided to investigate how the three dynein light chains may help to control interactions between the intermediate chain and non-dynein proteins. They used more stable versions of dynein, NudE and dynactin (from a fungus that grows at high temperatures) to produce the various subcomplexes formed by the intermediate chain, the three dynein light chains, and parts of p150 Glued and NudE. A suite of biophysical techniques was applied to study these structures, as they are challenging to capture using traditional approaches. This revealed that the unstructured region of the intermediate chain can fold back on itself, bringing together its two extremities; such folding blocks the p150 Glued and NudE binding site. This obstruction is cleared when the light chains bind to the intermediate chain, demonstrating how these three subunits can regulate dynein activity. In humans, mutations in dynein are associated with a range of serious neurological and muscular diseases. The work by Jara et al. brings new insight into the way this protein works; more importantly, it describes how to combine several biophysical techniques to study non-structured proteins, offering a blueprint that is likely to be relevant for a wide range of scientists. 
    more » « less
  3. The DNA inside human cells provides instructions for all of the processes that happen inside the body. Errors in the DNA may lead to cancer, sickle cell disease, cystic fibrosis, Huntington’s disease, or other genetic disorders. Medical researchers are exploring whether it is possible to replace or repair the faulty DNA (an approach known as gene therapy) to reduce the symptoms, or even cure individuals, of these conditions. Over the last ten years, a new technology known as CRISPR-Cas9 gene editing has proved to be a reliable and efficient way to make small and precise changes to DNA in living cells. First, an enzyme called Cas9 searches for a segment of target DNA segment that matches a template molecule the enzyme carries. Cas9 then cuts the target DNA, which is repaired to match a new customized DNA sequence: this changes the genetic information of the cell. The Cas9 protein is made of a succession of building blocks called amino acids that create long chains which then fold to form the final three-dimensional shape of the enzyme. A region of Cas9 known as the HNH domain is responsible for cutting the target DNA. However, it remains unclear exactly which amino acids within this domain work together to sever the DNA. Here, Zuo et al. combined computational and experimental approaches to reveal the three-dimensional structure of the Cas9 enzyme when the HNH domain is poised to cut the target DNA. The findings were used to generate a computational model of Cas9 and this model predicted that the HNH domain relies on a group of three amino acids known collectively as D839-H840-N863 to cleave DNA strands. This knowledge is useful to understand exactly how Cas9 modifies genetic information. Ultimately, this may help to improve CRISPR-Cas9 technology so it could be safely used in geneediting therapies. 
    more » « less
  4. Abstract

    Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post‐translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus‐responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.

     
    more » « less
  5. Allostery is one of most important processes in molecular biology by which proteins transmit the information from one functional site to another, frequently distant site. The information on ligand binding or on posttranslational modification at one site is transmitted along allosteric communication path to another functional site allowing for regulation of protein activity. The detailed analysis of the general character of allosteric communication paths is therefore extremely important. It enables to better understand the mechanism of allostery and can be used in for the design of new generations of drugs. Considering all the PDB annotated allosteric proteins (from ASD - AlloSteric Database) belonging to four different classes (kinases, nuclear receptors, peptidases and transcription factors), this work has attempted to decipher certain consistent patterns present in the residues constituting the allosteric communication sub-system (ACSS). The thermal fluctuations of hydrophobic residues in ACSSs were found to be significantly higher than those present in the non- ACSS part of the same proteins, while polar residues showed the opposite trend. The basic residues and hydroxyl residues were found to be slightly more predominant than the acidic residues and amide residues in ACSSs, hydrophobic residues were found extremely frequently in kinase ACSSs. Despite having different sequences and different lengths of ACSS, they were found to be structurally quite similar to each other – suggesting a preferred structural template for communication. ACSS structures recorded low RMSD and high Akaike Information Criterion (AIC) scores among themselves. While the ACSS networks for all the groups of allosteric proteins showed low degree centrality and closeness centrality, the betweenness centrality magnitudes revealed nonuniform behavior. Though cliques and communities could be identified within the ACSS, maximal-common-subgraph considering all the ACSS could not be generated, primarily due to the diversity in the dataset. Barring one particular case, the entire ACSS for any class of allosteric proteins did not demonstrate “small world” behavior, though the sub-graphs of the ACSSs, in certain cases, were found to form small-world networks. 
    more » « less