skip to main content

Title: Deciphering General Characteristics of Residues Constituting Allosteric Communication Paths
Allostery is one of most important processes in molecular biology by which proteins transmit the information from one functional site to another, frequently distant site. The information on ligand binding or on posttranslational modification at one site is transmitted along allosteric communication path to another functional site allowing for regulation of protein activity. The detailed analysis of the general character of allosteric communication paths is therefore extremely important. It enables to better understand the mechanism of allostery and can be used in for the design of new generations of drugs. Considering all the PDB annotated allosteric proteins (from ASD - AlloSteric Database) belonging to four different classes (kinases, nuclear receptors, peptidases and transcription factors), this work has attempted to decipher certain consistent patterns present in the residues constituting the allosteric communication sub-system (ACSS). The thermal fluctuations of hydrophobic residues in ACSSs were found to be significantly higher than those present in the non- ACSS part of the same proteins, while polar residues showed the opposite trend. The basic residues and hydroxyl residues were found to be slightly more predominant than the acidic residues and amide residues in ACSSs, hydrophobic residues were found extremely frequently in kinase ACSSs. Despite having different sequences and different lengths of ACSS, they were found to be structurally quite similar to each other – suggesting more » a preferred structural template for communication. ACSS structures recorded low RMSD and high Akaike Information Criterion (AIC) scores among themselves. While the ACSS networks for all the groups of allosteric proteins showed low degree centrality and closeness centrality, the betweenness centrality magnitudes revealed nonuniform behavior. Though cliques and communities could be identified within the ACSS, maximal-common-subgraph considering all the ACSS could not be generated, primarily due to the diversity in the dataset. Barring one particular case, the entire ACSS for any class of allosteric proteins did not demonstrate “small world” behavior, though the sub-graphs of the ACSSs, in certain cases, were found to form small-world networks. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Lecture notes in bioinformatics
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Many proteins exhibit a property called ‘allostery’. In allostery, an input signal at a specific site of a protein – such as a molecule binding, or the protein absorbing a photon of light – leads to a change in output at another site far away. For example, the protein might catalyze a chemical reaction faster or bind to another molecule more tightly in the presence of the input signal. This protein ‘remote control’ allows cells to sense and respond to changes in their environment. An ability to rapidly engineer new allosteric mechanisms into proteins is much sought after because this would provide an approach for building biosensors and other useful tools. One common approach to engineering new allosteric regulation is to combine a ‘sensor’ or input region from one protein with an ‘output’ region or domain from another. When researchers engineer allostery using this approach of combining input and output domains from different proteins, the difference in the output when the input is ‘on’ versus ‘off’ is often small, a situation called ‘modest allostery’. McCormick et al. wanted to know how to optimize this domain combination approach to increase the difference in output between the ‘on’ and ‘off’ states. Moremore »specifically, McCormick et al. wanted to find out whether swapping out or mutating specific amino acids (each of the individual building blocks that make up a protein) enhances or disrupts allostery. They also wanted to know if there are many possible mutations that change the effectiveness of allostery, or if this property is controlled by just a few amino acids. Finally, McCormick et al. questioned where in a protein most of these allostery-tuning mutations were located. To answer these questions, McCormick et al. engineered a new allosteric protein by inserting a light-sensing domain (input) into a protein involved in metabolism (a metabolic enzyme that produces a biomolecule called a tetrahydrofolate) to yield a light-controlled enzyme. Next, they introduced mutations into both the ‘input’ and ‘output’ domains to see where they had a greater effect on allostery. After filtering out mutations that destroyed the function of the output domain, McCormick et al. found that only about 5% of mutations to the ‘output’ domain altered the allosteric response of their engineered enzyme. In fact, most mutations that disrupted allostery were found near the site where the ‘input’ domain was inserted, while mutations that enhanced allostery were sprinkled throughout the enzyme, often on its protein surface. This was surprising in light of the commonly-held assumption that mutations on protein surfaces have little impact on the activity of the ‘output’ domain. Overall, the effect of individual mutations on allostery was small, but McCormick et al. found that these mutations can sometimes be combined to yield larger effects. McCormick et al.’s results suggest a new approach for optimizing engineered allosteric proteins: by introducing mutations on the protein surface. It also opens up new questions: mechanically, how do surface sites affect allostery? In the future, it will be important to characterize how combinations of mutations can optimize allosteric regulation, and to determine what evolutionary trajectories to high performance allosteric ‘switches’ look like.« less
  2. Abstract Summary

    A new dynamic community identifier (DCI) is presented that relies upon protein residue dynamic cross-correlations generated by Gaussian elastic network models to identify those residue clusters exhibiting motions within a protein. A number of examples of communities are shown for diverse proteins, including GPCRs. It is a tool that can immediately simplify and clarify the most essential functional moving parts of any given protein. Proteins usually can be subdivided into groups of residues that move as communities. These are usually densely packed local sub-structures, but in some cases can be physically distant residues identified to be within the same community. The set of these communities for each protein are the moving parts. The ways in which these are organized overall can aid in understanding many aspects of functional dynamics and allostery. DCI enables a more direct understanding of functions including enzyme activity, action across membranes and changes in the community structure from mutations or ligand binding. The DCI server is freely available on a web site (

    Supplementary information

    Supplementary data are available at Bioinformatics online.

  3. Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently,more »mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.« less
  4. Wallqvist, Anders (Ed.)
    Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of β-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.
  5. Entropy should directly reflect the extent of disorder in proteins. By clustering structurally related proteins and studying the multiple-sequence-alignment of the sequences of these clusters, we were able to link between sequence, structure, and disorder information. We introduced several parameters as measures of fluctuations at a given MSA site and used these as representative of the sequence and structure entropy at that site. In general, we found a tendency for negative correlations between disorder and structure, and significant positive correlations between disorder and the fluctuations in the system. We also found evidence for residue-type conservation for those residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be allowed. In addition, we found positive correlation for disorder and accessible surface area, validating that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations in the dihedral angles at the original mutated residue and disorder are positively correlated while dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts of the protein with which the disordered site interacts. This is another indication that disorderedmore »residues are involved in protein function.« less