skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large-Scale Reality Modeling of a University Campus Using Combined UAV and Terrestrial Photogrammetry for Historical Preservation and Practical Use
Unmanned aerial vehicles (UAV) enable detailed historical preservation of large-scale infrastructure and contribute to cultural heritage preservation, improved maintenance, public relations, and development planning. Aerial and terrestrial photo data coupled with high accuracy GPS create hyper-realistic mesh and texture models, high resolution point clouds, orthophotos, and digital elevation models (DEMs) that preserve a snapshot of history. A case study is presented of the development of a hyper-realistic 3D model that spans the complex 1.7 km2 area of the Brigham Young University campus in Provo, Utah, USA and includes over 75 significant structures. The model leverages photos obtained during the historic COVID-19 pandemic during a mandatory and rare campus closure and details a large scale modeling workflow and best practice data acquisition and processing techniques. The model utilizes 80,384 images and high accuracy GPS surveying points to create a 1.65 trillion-pixel textured structure-from-motion (SfM) model with an average ground sampling distance (GSD) near structures of 0.5 cm and maximum of 4 cm. Separate model segments (31) taken from data gathered between April and August 2020 are combined into one cohesive final model with an average absolute error of 3.3 cm and a full model absolute error of <1 cm (relative accuracies from 0.25 cm to 1.03 cm). Optimized and automated UAV techniques complement the data acquisition of the large-scale model, and opportunities are explored to archive as-is building and campus information to enable historical building preservation, facility maintenance, campus planning, public outreach, 3D-printed miniatures, and the possibility of education through virtual reality (VR) and augmented reality (AR) tours.  more » « less
Award ID(s):
1650547
PAR ID:
10316794
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Drones
Volume:
5
Issue:
4
ISSN:
2504-446X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study presents a novel multi-scale view-planning algorithm for automated targeted inspection using unmanned aircraft systems (UAS). In industrial inspection, it is important to collect the most relevant data to keep processing demands, both human and computational, to a minimum. This study investigates the viability of automated targeted multi-scale image acquisition for Structure from Motion (SfM)-based infrastructure modeling. A traditional view-planning approach for SfM is extended to a multi-scale approach, planning for targeted regions of high, medium, and low priority. The unmanned aerial vehicle (UAV) can traverse the entire aerial space and facilitates collection of an optimized set of views, both close to and far away from areas of interest. The test case for field validation is the Tibble Fork Dam in Utah. Using the targeted multi-scale flight planning, a UAV automatically flies a tiered inspection using less than 25% of the number of photos needed to model the entire dam at high-priority level. This results in approximately 75% reduced flight time and model processing load, while still maintaining high model accuracy where needed. Models display stepped improvement in visual clarity and SfM reconstruction integrity by priority level, with the higher priority regions more accurately modeling smaller and finer features. A resolution map of the final tiered model is included. While this study focuses on multi-scale view planning for optical sensors, the methods potentially extend to other remote sensors, such as aerial LiDAR. 
    more » « less
  2. Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV. 
    more » « less
  3. Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation. 
    more » « less
  4. NA (Ed.)
    In this paper, we investigate the operation of an aerial manipulator system, namely an Unmanned Aerial Vehicle (UAV) equipped with a controllable arm with two degrees of freedom to carry out actuation tasks on the fly. Our solution is based on employing a Q-learning method to control the trajectory of the tip of the arm, also called end-effector. More specifically, we develop a motion planning model based on Time To Collision (TTC), which enables a quadrotor UAV to navigate around obstacles while ensuring the manipulator’s reachability. Additionally, we utilize a model-based Q-learning model to independently track and control the desired trajectory of the manipulator’s end-effector, given an arbitrary baseline trajectory for the UAV platform. Such a combination enables a variety of actuation tasks such as high-altitude welding, structural monitoring and repair, battery replacement, gutter cleaning, sky scrapper cleaning, and power line maintenance in hard-to-reach and risky environments while retaining compatibility with flight control firmware. Our RL-based control mechanism results in a robust control strategy that can handle uncertainties in the motion of the UAV, offering promising performance. Specifically, our method achieves 92% accuracy in terms of average displacement error (i.e. the mean distance between the target and obtained trajectory points) using Q-learning with 15,000 episodes. 
    more » « less
  5. This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
    more » « less