Entropy plays a key role in the self-assembly of colloidal particles. Specifically, in the case of hard particles, which do not interact or overlap with each other during the process of self-assembly, the free energy is minimized due to an increase in the entropy of the system. Understanding the contribution of entropy and engineering it is increasingly becoming central to modern colloidal self-assembly research, because the entropy serves as a guide to design a wide variety of self-assembled structures for many technological and biomedical applications. In this work, we highlight the importance of entropy in different theoretical and experimental self-assembly studies. We discuss the role of shape entropy and depletion interactions in colloidal self-assembly. We also highlight the effect of entropy in the formation of open and closed crystalline structures, as well as describe recent advances in engineering entropy to achieve targeted self-assembled structures.
more »
« less
Machine learning analysis of self-assembled colloidal cones
Optical and confocal microscopy is used to image the self-assembly of microscale colloidal particles. The density and size of self-assembled structures is typically quantified by hand, but this is extremely tedious. Here, we investigate whether machine learning can be used to improve the speed and accuracy of identification. This method is applied to confocal images of dense arrays of two-photon lithographed colloidal cones. RetinaNet, a deep learning implementation that uses a convolutional neural network, is used to identify self-assembled stacks of cones. Synthetic data is generated using Blender to supplement experimental training data for the machine learning model. This synthetic data captures key characteristics of confocal images, including slicing in the z-direction and Gaussian noise. We find that the best performance is achieved with a model trained on a mixture of synthetic data and experimental data. This model achieves a mean Average Precision (mAP) of ∼85%, and accurately measures the degree of assembly and distribution of self-assembled stack sizes for different cone diameters. Minor discrepancies between machine learning and hand labeled data is discussed in terms of the quality of synthetic data, and differences in cones of different sizes.
more »
« less
- Award ID(s):
- 2052251
- PAR ID:
- 10316892
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 7
- ISSN:
- 1744-683X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Colloidal self-assembly is a viable solution to making advanced metamaterials. While the physicochemical properties of the particles affect the properties of the assembled structures, particle configuration is also a critical determinant factor. Colloidal self-assembly state classification is typically achieved with order parameters, which are aggregate variables normally defined with nontrivial exploration and validation. Here, we present an image-based framework to classify the state of a 2-D colloidal self-assembly system. The framework leverages deep learning algorithms with unsupervised learning for state classification and a supervised learning-based convolutional neural network for state prediction. The neural network models are developed using data from an experimentally validated Brownian dynamics simulation. Our results demonstrate that the proposed approach gives a satisfying performance, comparable and even outperforming the commonly used order parameters in distinguishing void defective states from ordered states. Given the data-based nature of the approach, we anticipate its general applicability and potential automatability to different and complex systems where image or particle coordination acquisition is feasible.more » « less
-
Self-assembly of colloidal particles is emerging as a promising approach for producing novel materials. These colloidal particles can be synthesized with protrusions (lobes) on their surfaces that allow the formation of porous structures with a wide range of applications. Using Langevin dynamics simulations, we studied self-assembly in the binary mixtures of lobed colloidal particles with variations in their lobe sizes to investigate the feasibility of using dumbbell particles (with two lobes) as cross-linkers to increase the porosity in self-assembled morphologies. Each binary system was formed by mixing the dumbbell particles with one of the following types of particles: trigonal planar (three lobes), tetrahedral (four lobes), trigonal bipyramidal (five lobes), and octahedral (six lobes). We observed that the lobe size on each particle can be tuned to favor the formation of random aggregates and spherical aggregates when the lobes are larger and well-ordered crystalline structures when the lobes are smaller. We also observed that these polydisperse systems form self-assembled structures characterized by porosities higher than those of the structures formed by the monodisperse systems. These results indicate that the lobe size is an important design feature that can be optimized to achieve desired structures with distinct morphologies and porosities, and the dumbbell particles are effective cross-linking agents to enhance the porosity in self-assembled structures.more » « less
-
Abstract Checkerboard lattices—where the resulting structure is open, porous, and highly symmetric—are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air–water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.more » « less
-
Confocal microscopy is a standard approach for obtaining volumetric images of a sample with high axial and lateral resolution, especially when dealing with scattering samples. Unfortunately, a confocal microscope is quite expensive compared to traditional microscopes. In addition, the point scanning in confocal microscopy leads to slow imaging speed and photobleaching due to the high dose of laser energy. In this paper, we demonstrate how the advances in machine learning can be exploited to teach a traditional wide-field microscope, one that’s available in every lab, into producing 3D volumetric images like a confocal microscope. The key idea is to obtain multiple images with different focus settings using a wide-field microscope and use a 3D generative adversarial network (GAN) based neural network to learn the mapping between the blurry low-contrast image stacks obtained using a wide-field microscope and the sharp, high-contrast image stacks obtained using a confocal microscope. After training the network with widefield-confocal stack pairs, the network can reliably and accurately reconstruct 3D volumetric images that rival confocal images in terms of its lateral resolution, z-sectioning and image contrast. Our experimental results demonstrate generalization ability to handle unseen data, stability in the reconstruction results, high spatial resolution even when imaging thick (∼40 microns) highly-scattering samples. We believe that such learning-based microscopes have the potential to bring confocal imaging quality to every lab that has a wide-field microscope.more » « less
An official website of the United States government

