Internet-of-Things (IoT) applications have sources sense and send their measurement updates over the Internet to a monitor (control station) for real-time monitoring and actuation. Ideally, these updates would be delivered fresh, at a high rate constrained only by the supported sensing rate. However, such a rate may lead to network congestion related delays in delivery of updates at the monitor that make the freshest update at the monitor unacceptably old for the application. Alternately, at low rates, while updates arrive at the monitor with smaller delays, new updates arrive infrequently. Thus, both low and high rates may lead to an undesirably aged freshest update at the monitor. We propose a novel transport layer protocol, namely the Age Control Protocol (ACP), which enables timely delivery of such updates to monitors over the Internet in a network-transparent manner. ACP adapts the rate of updates from a source such that the average age of updates at the monitor is minimized. We detail the protocol and the proposed control algorithm. We demonstrate its efficacy using extensive simulations and realworld experiments, including wireless access for the sources and an end-to-end connection with multiple hops to the monitor.
more »
« less
An Empirical Study of Ageing in the Cloud
We quantify, over inter-continental paths, the ageing of TCP packets, throughput and delay for different TCP congestion control algorithms containing a mix of loss-based, delay-based and hybrid congestion control algorithms. In comparing these TCP variants to ACP+, an improvement over ACP, we shed better light on the ability of ACP+ to deliver timely updates over fat pipes and long paths. ACP+ estimates the network conditions on the end-to-end path and adapts the rate of status updates to minimize age. It achieves similar average age as the best (age wise) performing TCP algorithm but at end-to-end throughputs that are two orders of magnitude smaller. We also quantify the significant improvements that ACP+ brings to age control over a shared multiaccess channel.
more »
« less
- Award ID(s):
- 1717041
- PAR ID:
- 10316920
- Date Published:
- Journal Name:
- INFOCOM Age of Information Workshop
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent proposals for reconfigurable data center networks have shown that providing multiple time-varying paths can improve network capacity and lower physical latency. However, existing TCP variants are ill-suited to utilize available capacity because their congestion control cannot react quickly enough to drastic variations in bandwidth and latency. We present Time-division TCP (TDTCP), a new TCP variant designed for reconfigurable data center networks. TDTCP recognizes that communication in these fabrics happens over a set of paths, each having its own physical characteristics and cross traffic. TDTCP multiplexes each connection across multiple independent congestion states---one for each distinct path---while managing connection-wide tasks in a shared fashion. It leverages network support to receive timely notification of path changes and promptly matches its local view to the current path. We implement TDTCP in the Linux kernel. Results on an emulated network show that TDTCP improves throughput over both traditional TCP variants, such as DCTCP and CUBIC, and multipath TCP by 24--41% without requiring significant in-network buffering to hide path variations.more » « less
-
This paper presents the motivation and design of MTP, a new offload-friendly message transport protocol. Existing transport protocols like TCP, MPTCP, and UDP/Quic all have key limitations when used in a network that may potentially offload computation from end-servers into NICs, switches, and other network devices. To enable important new in-network computing use cases and correct congestion control in the face of ever changing network paths and application replicas, MTP introduces a new message transport protocol design and pathlet congestion control, a new approach where end-hosts explicitly communicate messaging information to network devices and network devices explicitly communicate network path and congestion information back to end-hosts.more » « less
-
BBR is a new congestion control algorithm proposed by Google that builds a model of the network path consisting of its bottleneck bandwidth and RTT to govern its sending rate rather than packet loss (like CUBIC and many other popular congestion control algorithms). Loss-based congestion control has been shown to be vulnerable to acknowledgment manipulation attacks. However, no prior work has investigated how to design such attacks for BBR, nor how effective they are in practice. In this paper we systematically analyze the vulnerability of BBR to acknowledgement manipulation attacks. We create the first detailed BBR finite state machine and a novel algorithm for inferring its current BBR state at runtime by passively observing network traffic.We then adapt and apply a TCP fuzzer to the Linux TCP BBR v1.0 implementation. Our approach generated 30,297 attack strategies, of which 8,859 misled BBR about actual network conditions. From these, we identify 5 classes of attacks causing BBR to send faster, slower or stall. We also found that BBR is immune to acknowledgment burst, division and duplication attacks that were previously shown to be effective against loss-based congestion control such as TCP New Reno.more » « less
-
null (Ed.)Cellular networks are becoming ever more sophisticated and over-crowded, imposing the most delay, jitter, and throughput damage to end-to-end network flows in today’s internet. We therefore ar- gue for fine-grained mobile endpoint-based wireless measurements to inform a precise congestion control algorithm through a well- defined API to the mobile’s cellular physical layer. Our proposed congestion control algorithm is based on Physical-Layer Bandwidth measurements taken at the Endpoint (PBE-CC), and captures the latest 5G New Radio innovations that increase wireless capacity, yet create abrupt rises and falls in available wireless capacity that the PBE-CC sender can react to precisely and rapidly. We imple- ment a proof-of-concept prototype of the PBE measurement module on software-defined radios and the PBE sender and receiver in C. An extensive performance evaluation compares PBE-CC head to head against the cellular-aware and wireless-oblivious congestion control protocols proposed in the research community and in deployment, in mobile and static mobile scenarios, and over busy and idle networks. Results show 6.3% higher average throughput than BBR, while simultaneously reducing 95th percentile delay by 1.8×.more » « less