skip to main content


Title: Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest; concentrations of foliar metabolites: polyamines, amino acids, chlorophyll, carotenoids, soluble proteins, soluble elements, sugars, and total nitrogen and carbon in red maple (Acer rubrum) trees.
Foliage was collected in 2015 and 2017 from red maple trees at the Climate Change Across Seasons Experiment (CCASE) as part of the Hubbard Brook Ecosystem Study (HBES). Analyses of foliar metabolites include polyamines, amino acids, chlorophylls, carotenoids, soluble proteins, soluble inorganic elements, sugars, and total nitrogen and carbon. There are six (11 x 14m) plots in total in this study; two control (plots 1 and 2), two warmed 5 degrees (°) Celsius (C) above ambient throughout the growing season (plots 3 and 4), and two warmed 5 °C in the growing season, with snow removal during the winter to induce soil freezing and then warmed with buried heating cables to create a subsequent thaw (plots 5 and 6). Each soil freeze/thaw cycle includes 72 hours of soil freezing followed by 72 hours of thaw. Four kilometers (km) of heating cable are buried in the soil to warm these four plots. Together, these treatments led to warmer growing season soil temperatures and an increased frequency of soil freeze-thaw cycles (FTCs) in winter. Our goal was to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple trees. These data were gathered as a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685
NSF-PAR ID:
10316932
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Root damage, as relative electrolyte leakage, was assessed following winter freeze-thaw cycle experimental treatments in 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018). https://doi.org/10.1007/s10533-018-0422-5 
    more » « less
  2. Resin available soil solution nitrogen was measured during seasonal incubations in 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018). https://doi.org/10.1007/s10533-018-0422-5 
    more » « less
  3. Fine root nitrogen uptake capacity was measured on excised roots prior to experimental treatment in 2013 and throughout the growing seasons of 2014 and 2015 on all Climate Change Across Seasons Experiment (CCASE) plots. Reference (or control) plots are shared with the collaborating Northern Forest DroughtNet experiment. There are six plots total (each 11 x 14m). Two are warmed 5 degrees C throughout the growing season (Plots 3 and 4). Two others are warmed 5 degrees C in the growing season and have snow removed during winter to induce soil freeze/thaw cycles (Plots 5 and 6). Four kilometers (2.5 mi) of heating cable are buried in the soil to warm these four plots. Two additional plots serve as controls for our experiment (Plots 1 and 2). Analysis and results from these data are presented in Sanders-DeMott 2018. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Sanders-DeMott, R., Sorensen, P.O., Reinmann, A.B. et al. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018). https://doi.org/10.1007/s10533-018-0422-5 
    more » « less
  4. Abstract

    Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid‐ and high‐latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, γ‐aminobutyric acid, valine, leucine, and isoleucine). Treatment‐specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment‐related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.

     
    more » « less
  5. Projections for the northeastern U.S. indicate that mean air temperatures will rise and snowfall will become less frequent, causing more frequent soil freezing. To test fungal responses to these combined chronic and extreme soil temperature changes, we conducted a laboratory-based common garden experiment with soil fungi that had been subjected to different combinations of growing season soil warming, winter soil freeze/thaw cycles, and ambient conditions for four years in the field. We found that fungi originating from field plots experiencing a combination of growing season warming and winter freeze/thaw cycles had inherently lower activity of acid phosphatase, but higher cellulase activity, that could not be reversed in the lab. In addition, fungi quickly adjusted their physiology to freeze/thaw cycles in the laboratory, reducing growth rate and potentially reducing their carbon use efficiency. Our findings suggest that less than four years of new soil temperature conditions in the field can lead to physiological shifts by some soil fungi, as well as irreversible loss or acquisition of extracellular enzyme activity traits by other fungi. These findings could explain field observations of shifting soil carbon and nutrient cycling under simulated climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less