skip to main content


Title: Hubbard Brook Experimental Forest: Seedling bank – watershed 1 and watershed 6 (2018)
The understory layer is complex and includes groups of stems with distinctly different chances of survival and recruitment to the sapling size class. We explored how calcium amendment has impacted the trajectory of the seedling bank at Hubbard Brook Experimental Forest. The density of all tree stems in the seedling bank in 2018 (19 years after treatment) was greater in CAL (Watershed 1; calcium treatment) than REF (Waterhsed 6; reference) and beech was more abundant than sugar maple in both watersheds. In terms of relative abundance, the treatment had the opposite effects on the two species: the relative density of sugar maple was significantly greater in CAL than REF while the relative density of beech was significantly less. In terms of beech stem origin, Beech sprouts were more abundant than seedlings on both watersheds; however, beech stems of seed origin were more abundant on CAL (mean±1SE: 4.06±0.49 seedlings m-2) than REF (2.98±0.42), while sprouts were fewer (CAL: 14.4±1.30; REF: 20.5±1.47) resulting in the seedling to sprout ratio on CAL (1:3.5) being half that on REF (1:7). The influence on the seedling bank on future composition of these forests remains to be seen. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685
NSF-PAR ID:
10316989
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The complex effects of global environmental changes on ecosystems result from the interaction of multiple stressors, their direct impacts on species and their indirect impacts on species interactions. Air pollution (and resulting depletion of soil base cations) and biotic invasion (e.g. beech bark disease [BBD] complex) are two stressors that are affecting the foundational tree species of northern hardwood forests, sugar maple and American beech, in northeastern North America.

    At the Hubbard Brook Experimental Forest in New Hampshire, a watershed‐scale calcium (Ca) addition in 1999 restored soil Ca that had been lost as a result of acid deposition in a maple‐beech forest that was severely affected by BBD beginning in the 1970s. We present historic data from the reference watershed for BBD progression, 20 years of comparative forest data from the treated and reference watersheds, and tree demographic rates for the most recent decade. We hypothesized that mitigation of soil acidification on the treated watershed in the presence of BBD would favour improved performance of sugar maple, a species that is particularly sensitive to base cation depletion.

    We observed significant responses of seed production, seedling bank composition, sapling survival and recruitment, and tree mortality and growth to the restoration of soil Ca, indicating that acid rain depletion of soil base cations has influenced demographic rates of maple and beech. Overall, the reduced performance of sugar maple on acidified soils may indirectly favour the persistence of diseased beech trees and a greater abundance of beech vegetative sprouts, effectively promoting the chronic presence of severe BBD in the population.

    Synthesis. The shifting conditions created by global change have altered long‐term demographic rates and may thereby impact competitive interactions in the current centre of these species ranges and have more profound implications for species persistence and migration potential than previously anticipated.

     
    more » « less
  2. In 1990-1991 segments of boles from felled sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis) and American beech (Fagus grandifolia) trees were placed in the field to study the rate of decomposition and nutrient loss (or gain) over time. The segments incubated in the field, ranging from 0.5-1.3 meters in length, were paired with fresh segments from the same trees. The fresh segments were taken to the lab shortly after felling, dried, weighed and subsampled. Fresh samples of wood and bark were collected separately. Incubated bole segments were collected in 1993 (T1), 1997 (T2), 2001 (T3), 2007 (T4) and 2015/2016 (T5). The whole bole segments were transported to the lab, measured, dried and weighed to determine mass loss. Subsamples of the bole wood and bark were collected for chemical analysis, including C, N, H, Ca, Mg, K, Si, Al, Pb, Zn, Mn and Fe. Chemical analyses were conducted concurrently on the fresh (T0) and incubated samples. This data set includes the masses of the fresh and incubated boles along with the concentrations of the chemical analytes. Element pools in the boles can be calculated by multiplying the concentrations by the mass values. This data set includes chemical data for samples collected in 1993, 2001, and 2007 and their paired fresh samples. Samples from 1997 were measured for mass, but inadvertently discarded prior to chemical analysis. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.   
    more » « less
  3. In 1997, as part of a study of the relationships between snow depth, soil freezing and nutrient cycling (http://www.ecostudies.org/people_sci_groffman_snow_summary.html), we established eight 10 x 10-m plots located within four stands; two dominated (80%) by sugar maple and two dominated by yellow birch, with one snow reduction (freeze) and one reference plot in each stand. In 2001, we established eight new 10-m x 10-m plots (4 treatment, 4 reference) in four new sites; two high elevation, north facing and two low elevation, south facing maple-beech-birch stands. To establish plots for the “freeze” study, we cleared minor amounts of understory vegetation from all (both freeze and reference) plots (to facilitate shoveling). We then installed soil solution samplers (zero tension lysimeters), thermistors for soil temperature monitoring, water content (time domain) reflectometers (for measuring soil moisture), soil atmosphere sampling probes, minirhizotron access tubes, and trace gas flux measurement chambers (described below). All plots were equipped with dataloggers to allow for continuous monitoring of soil moisture and temperature. Treatments (keep plots snow free by shoveling through the end of January) were applied in the winters of 1997/98, 1998/99, 2002/2003 and 2003/2004. Measurements of soil nitrate (NO3 -) and ammonium (NH4 +) concentrations, microbial biomass carbon (C) and nitrogen (N) content, microbial respiration, potential nitrification and N mineralization rates, pH, and denitrification potential were measured on these plots at multiple time points during these studies. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES) using funding from the U.S. National Science Foundation. The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Watershed 1 and Bear Brook data. Freeze plot trace gas can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=251. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Spring and Fall leaf phenology observations have been made at 9 locations at the Hubbard Brook Experimental Forest since 1989. Timing and progression of spring leaf out and fall senescence are recorded for 3 dominant tree species, sugar maple, yellow birch, and beech, in treated and untreated watersheds and high and low elevations. Weekly measurements are taken during the active period of the fall or spring season. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less