skip to main content


Title: Scalability and performance tradeoffs in quantifying relationships between elevation and tidal wetland plant communities
Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both intercompare unbiased digital elevation model (DEM) creation techniques and to describe niche partitioning of several common tidal wetland plant species. We identified a tradeoff between scalability and performance in creating unbiased DEMs, with more data intensive methods such as kriging performing better than 3 more scalable methods involving postprocessing of light detection and ranging (LiDAR)-based DEMs. The LiDAR Elevation Correction with Normalized Difference Vegetation Index (LEAN) method provided a compromise between scalability and performance, although it underpredicted variability in elevation. In areas where native plants dominated, the sedge Schoenoplectus americanus occupied more frequently flooded areas (median: 0.22, 95% range: 0.09 to 0.31 m relative to North America Vertical Datum of 1988 [NAVD88]) and the grass Spartina patens, less frequently flooded (0.27, 0.1 to 0.35 m NAVD88). Non-native Phragmites australis dominated at lower elevations more than the native graminoids, but had a wide flooding tolerance, encompassing both their ranges (0.19, −0.05 to 0.36 m NAVD88). The native shrub Iva frutescens also dominated at lower elevations (0.20, 0.04 to 0.30 m NAVD88), despite being previously described as a high marsh species. These analyses not only provide valuable context for the temporally rich but spatially restricted data collected at a single well-studied site, but also provide broad insight into mapping techniques and species zonation.  more » « less
Award ID(s):
1950656 1655622
NSF-PAR ID:
10316990
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Marine ecology
Volume:
666
ISSN:
1616-1599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters in some locations, while other stretches of ecotone present a gradual transition where smaller, widely spaced trees are interspersed into the herbaceous marsh. Juncus roemerianus then extends landward to a high marsh patchwork of succulent halophytes (including Salicornia bigellovi, Sesuvium sp., and Batis maritima), scattered dwarf mangrove, and salt pans, followed in turn by upland vegetation that includes Pinus sp. and Serenoa repens. Field design and sample collection. We established three study sites spaced at approximately 5 km intervals along the western coastline of the central Florida peninsula. The sites consisted of the Salt Springs (28.3298°, -82.7274°), Energy Marine Center (28.2903°, -82.7278°), and Green Key (28.2530°, -82.7496°) sites on the Gulf of Mexico coastline in Pasco County, Florida, USA. At each site, we established three plot pairs, each consisting of one saltmarsh plot and one mangrove plot. Plots were 50 m^2 in size. Plots pairs within a site were separated by 230-1070 m, and the mangrove and saltmarsh plots composing a pair were 70-170 m apart. All plot pairs consisted of directly adjacent patches of mangrove forest and J. roemerianus saltmarsh, with the mangrove forests exhibiting a closed canopy and a tree architecture (height 4-6 m, crown width 1.5-3 m). Mangrove plots were located at approximately the midpoint between the seaward edge (water-mangrove interface) and landward edge (mangrove-marsh interface) of the mangrove zone. Saltmarsh plots were located 20-25 m away from any mangrove trees and into the J. roemerianus zone (i.e., landward from the mangrove-marsh interface). Plot pairs were coarsely similar in geomorphic setting, as all were located on the Gulf of Mexico coastline, rather than within major sheltering formations like Tampa Bay, and all plot pairs fit the tide-dominated domain of the Woodroffe classification (Woodroffe, 2002, "Coasts: Form, Process and Evolution", Cambridge University Press), given their conspicuous semi-diurnal tides. There was nevertheless some geomorphic variation, as some plot pairs were directly open to the Gulf of Mexico while others sat behind keys and spits or along small tidal creeks. Our use of a plot-pair approach is intended to control for this geomorphic variation. Plot center elevations (cm above mean sea level, NAVD 88) were estimated by overlaying the plot locations determined with a global positioning system (Garmin GPS 60, Olathe, KS, USA) on a LiDAR-derived bare-earth digital elevation model (Dewberry, Inc., 2019). The digital elevation model had a vertical accuracy of ± 10 cm (95 % CI) and a horizontal accuracy of ± 116 cm (95 % CI). Soil samples were collected via coring at low tide in June 2011. From each plot, we collected a composite soil sample consisting of three discrete 5.1 cm diameter soil cores taken at equidistant points to 7.6 cm depth. Cores were taken by tapping a sleeve into the soil until its top was flush with the soil surface, sliding a hand under the core, and lifting it up. Cores were then capped and transferred on ice to our laboratory at the University of South Florida (Tampa, Florida, USA), where they were combined in plastic zipper bags, and homogenized by hand into plot-level composite samples on the day they were collected. A damp soil subsample was immediately taken from each composite sample to initiate 1 y incubations for determination of active C and N (see below). The remainder of each composite sample was then placed in a drying oven (60 °C) for 1 week with frequent mixing of the soil to prevent aggregation and liberate water. Organic wetland soils are sometimes dried at 70 °C, however high drying temperatures can volatilize non-water liquids and oxidize and decompose organic matter, so 50 °C is also a common drying temperature for organic soils (Gardner 1986, "Methods of Soil Analysis: Part 1", Soil Science Society of America); we accordingly chose 60 °C as a compromise between sufficient water removal and avoidance of non-water mass loss. Bulk density was determined as soil dry mass per core volume (adding back the dry mass equivalent of the damp subsample removed prior to drying). Dried subsamples were obtained for determination of soil organic matter (SOM), mineral texture composition, and extractable and total carbon (C) and nitrogen (N) within the following week. Sample analyses. A dried subsample was apportioned from each composite sample to determine SOM as mass loss on ignition at 550 °C for 4 h. After organic matter was removed from soil via ignition, mineral particle size composition was determined using a combination of wet sieving and density separation in 49 mM (3 %) sodium hexametaphosphate ((NaPO_3)_6) following procedures in Kettler et al. (2001, Soil Science Society of America Journal 65, 849-852). The percentage of dry soil mass composed of silt and clay particles (hereafter, fines) was calculated as the mass lost from dispersed mineral soil after sieving (0.053 mm mesh sieve). Fines could have been slightly underestimated if any clay particles were burned off during the preceding ignition of soil. An additional subsample was taken from each composite sample to determine extractable N and organic C concentrations via 0.5 M potassium sulfate (K_2SO_4) extractions. We combined soil and extractant (ratio of 1 g dry soil:5 mL extractant) in plastic bottles, reciprocally shook the slurry for 1 h at 120 rpm, and then gravity filtered it through Fisher G6 (1.6 μm pore size) glass fiber filters, followed by colorimetric detection of nitrite (NO_2^-) + nitrate (NO_3^-) and ammonium (NH_4^+) in the filtrate (Hood Nowotny et al., 2010,Soil Science Society of America Journal 74, 1018-1027) using a microplate spectrophotometer (Biotek Epoch, Winooski, VT, USA). Filtrate was also analyzed for dissolved organic C (referred to hereafter as extractable organic C) and total dissolved N via combustion and oxidation followed by detection of the evolved CO_2 and N oxide gases on a Formacs HT TOC/TN analyzer (Skalar, Breda, The Netherlands). Extractable organic N was then computed as total dissolved N in filtrate minus extractable mineral N (itself the sum of extractable NH_4-N and NO_2-N + NO_3-N). We determined soil total C and N from dried, milled subsamples subjected to elemental analysis (ECS 4010, Costech, Inc., Valencia, CA, USA) at the University of South Florida Stable Isotope Laboratory. Median concentration of inorganic C in unvegetated surface soil at our sites is 0.5 % of soil mass (Anderson, 2019, Univ. of South Florida M.S. thesis via methods in Wang et al., 2011, Environmental Monitoring and Assessment 174, 241-257). Inorganic C concentrations are likely even lower in our samples from under vegetation, where organic matter would dilute the contribution of inorganic C to soil mass. Nevertheless, the presence of a small inorganic C pool in our soils may be counted in the total C values we report. Extractable organic C is necessarily of organic C origin given the method (sparging with HCl) used in detection. Active C and N represent the fractions of organic C and N that are mineralizable by soil microorganisms under aerobic conditions in long-term soil incubations. To quantify active C and N, 60 g of field-moist soil were apportioned from each composite sample, placed in a filtration apparatus, and incubated in the dark at 25 °C and field capacity moisture for 365 d (as in Lewis et al., 2014, Ecosphere 5, art59). Moisture levels were maintained by frequently weighing incubated soil and wetting them up to target mass. Daily CO_2 flux was quantified on 29 occasions at 0.5-3 week intervals during the incubation period (with shorter intervals earlier in the incubation), and these per day flux rates were integrated over the 365 d period to compute an estimate of active C. Observations of per day flux were made by sealing samples overnight in airtight chambers fitted with septa and quantifying headspace CO_2 accumulation by injecting headspace samples (obtained through the septa via needle and syringe) into an infrared gas analyzer (PP Systems EGM 4, Amesbury, MA, USA). To estimate active N, each incubated sample was leached with a C and N free, 35 psu solution containing micronutrients (Nadelhoffer, 1990, Soil Science Society of America Journal 54, 411-415) on 19 occasions at increasing 1-6 week intervals during the 365 d incubation, and then extracted in 0.5 M K_2SO_4 at the end of the incubation in order to remove any residual mineral N. Active N was then quantified as the total mass of mineral N leached and extracted. Mineral N in leached and extracted solutions was detected as NH_4-N and NO_2-N + NO_3-N via colorimetry as above. This incubation technique precludes new C and N inputs and persistently leaches mineral N, forcing microorganisms to meet demand by mineralizing existing pools, and thereby directly assays the potential activity of soil organic C and N pools present at the time of soil sampling. Because this analysis commences with disrupting soil physical structure, it is biased toward higher estimates of active fractions. Calculations. Non-mobile C and N fractions were computed as total C and N concentrations minus the extractable and active fractions of each element. This data package reports surface-soil constituents (moisture, fines, SOM, and C and N pools and fractions) in both gravimetric units (mass constituent / mass soil) and areal units (mass constituent / soil surface area integrated through 7.6 cm soil depth, the depth of sampling). Areal concentrations were computed as X × D × 7.6, where X is the gravimetric concentration of a soil constituent, D is soil bulk density (g dry soil / cm^3), and 7.6 is the sampling depth in cm. 
    more » « less
  2. ArcticDEM provides the public with an unprecedented opportunity to access very high-spatial resolution digital elevation models (DEMs) covering the pan-Arctic surfaces. As it is generated from stereo-pairs of optical satellite imagery, ArcticDEM represents a mixture of a digital surface model (DSM) over a non-ground areas and digital terrain model (DTM) at bare grounds. Reconstructing DTM from ArcticDEM is thus needed in studies requiring bare ground elevation, such as modeling hydrological processes, tracking surface change dynamics, and estimating vegetation canopy height and associated forest attributes. Here we proposed an automated approach for estimating DTM from ArcticDEM in two steps: (1) identifying ground pixels from WorldView-2 imagery using a Gaussian mixture model (GMM) with local refinement by morphological operation, and (2) generating a continuous DTM surface using ArcticDEMs at ground locations and spatial interpolation methods (ordinary kriging (OK) and natural neighbor (NN)). We evaluated our method at three forested study sites characterized by different canopy cover and topographic conditions in Livengood, Alaska, where airborne lidar data is available for validation. Our results demonstrate that (1) the proposed ground identification method can effectively identify ground pixels with much lower root mean square errors (RMSEs) (<0.35 m) to the reference data than the comparative state-of-the-art approaches; (2) NN performs more robustly in DTM interpolation than OK; (3) the DTMs generated from NN interpolation with GMM-based ground masks decrease the RMSEs of ArcticDEM to 0.648 m, 1.677 m, and 0.521 m for Site-1, Site-2, and Site-3, respectively. This study provides a viable means of deriving high-resolution DTM from ArcticDEM that will be of great value to studies focusing on the Arctic ecosystems, forest change dynamics, and earth surface processes. 
    more » « less
  3. Abstract

    High‐resolution digital elevation models (DEMs) have revolutionized research in geomorphology by allowing for detailed quantitative analysis of Earth's surface. Satellite stereo images offer the promise of expanding the availability of high‐resolution DEMs over broad areas, but rigorous evaluation of the scientific application of these datasets remains limited. In this study, we consider DEMs built using stereo pairs of high‐resolution (0.5 m) satellite imagery and the open‐source DEM extraction algorithm, Surface Extraction from TIN Space‐search Minimization (SETSM). We selected locations across a range of landscapes to evaluate the application of these DEMs to geomorphic problems, with particular attention to hillslope analyses where high spatial resolution has been shown to be important for revealing topographic signatures of tectonic and environmental processes. We compared the quality of SETSM 2 m DEMs to LiDAR‐derived DEMs and the widely available SRTM‐30 m and ALOS‐30 m DEMs by comparing the elevation data and derivative products (e.g., slope, aspect, and curvature). We found that SETSM DEMs performed noticeably better than SRTM and ALOS DEMs, but with systematic biases relative to LiDAR DEMs in regions with vegetation. Moreover, noise in the initial SETSM elevation data is amplified with every subsequent derivative, significantly decreasing quality. Finally, we evaluated the potential use of SETSM products for change detection. Applying DEM differencing to a major landslide, we found volume and sediment thickness from SETSM DEMs were similar to volumes and thicknesses from other studies. This example illustrates the capabilities of SETSM and other satellite‐based stereo‐photogrammetry for contributing to rapid response after natural disasters. Overall, we conclude that DEMs derived from satellite image stereo‐photogrammetry can markedly improve on lower resolution global elevation data for terrain analysis and can open possibilities for change detection, but that care needs to be taken in their application especially in regions with significant vegetation.

     
    more » « less
  4. Groundwater hydrology plays an important role in coastal marsh biogeochemical function, in part because groundwater dynamics drive the zonation of macrophyte community distribution. Changes that occur over time, such as sea level rise and shifts in habitat structure are likely altering groundwater dynamics and eco-hydrological zonation. We examined tidal flooding and marsh water table dynamics in 1999 and 2019 and mapped shifts in plant distributions over time, at Piermont Marsh, a brackish tidal marsh located along the Hudson River Estuary near New York City. We found evidence that the marsh surface was flooded more frequently in 2019 than 1999, and that tides were propagating further into the marsh in 2019, although marsh surface elevation gains were largely matching that of sea level rise. The changes in groundwater hydrology that we observed are likely due to the high tide rising at a rate that is greater than that of mean sea level. In addition, we report changes in plant cover by P. australis , which has displaced native marsh vegetation at Piermont Marsh. Although P. australis has increased in cover, wrack deposition and plant die off associated Superstorm Sandy allowed for native vegetation to rebound in part of our focus area. These results suggest that climate change and plant community composition may interact to shape ecohydrologic zonation. Considering these results, we recommend that habitat models consider tidal range expansion and groundwater hydrology as metrics when predicting the impact of sea level rise on marsh resilience. 
    more » « less
  5. Groundwater hydrology plays an important role in coastal marsh biogeochemical function, in part because groundwater dynamics drive the zonation of macrophyte community distribution. Changes that occur over time, such as sea level rise and shifts in habitat structure are likely altering groundwater dynamics and eco-hydrological zonation. We examined tidal flooding and marsh water table dynamics in 1999 and 2019 and mapped shifts in plant distributions over time, at Piermont Marsh, a brackish tidal marsh located along the Hudson River Estuary near New York City. We found evidence that the marsh surface was flooded more frequently in 2019 than 1999, and that tides were propagating further into the marsh in 2019, although marsh surface elevation gains were largely matching that of sea level rise. The changes in groundwater hydrology that we observed are likely due to the high tide rising at a rate that is greater than that of mean sea level. In addition, we report changes in plant cover by P. australis, which has displaced native marsh vegetation at Piermont Marsh. Although P. australis has increased in cover, wrack deposition and plant die off associated Superstorm Sandy allowed for native vegetation to rebound in part of our focus area. These results suggest that climate change and plant community composition may interact to shape ecohydrologic zonation. Considering these results, we recommend that habitat models consider tidal range expansion and groundwater hydrology as metrics when predicting the impact of sea level rise on marsh resilience. 
    more » « less