skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Watershed sediment cannot offset sea level rise in most US tidal wetlands
Watershed sediment can increase elevation of tidal wetlands struggling against rising seas, but where and how much watershed sediment helps is unknown. By combining contiguous US datasets on sediment loads and tidal wetland areas for 4972 rivers and their estuaries, we calculated that river sediment accretion will be insufficient to match sea level rise in 72% of cases because most watersheds are too small (median 21 square kilometers) to generate adequate sediment. Nearly half the tidal wetlands would require 10 times more river sediment to match sea level, a magnitude not generally achievable by dam removal in some regions. The realization that watershed sediment has little effect on most tidal wetland elevations shifts research priorities toward biological processes and coastal sediment dynamics that most influence elevation change.  more » « less
Award ID(s):
2049073
PAR ID:
10503869
Author(s) / Creator(s):
; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
382
Issue:
6675
ISSN:
0036-8075
Page Range / eLocation ID:
1191 to 1195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Shorelines and their ecosystems are endangered by sea-level rise. Nature-based coastal protection is becoming a global strategy to enhance coastal resilience through the cost-effective creation, restoration and sustainable use of coastal wetlands. However, the resilience to sea-level rise of coastal wetlands created under Nature-based Solution has been assessed largely on a regional scale. Here we assess, using a meta-analysis, the difference in accretion, elevation, and sediment deposition rates between natural and restored coastal wetlands across the world. Our results show that restored coastal wetlands can trap more sediment and that the effectiveness of these restoration projects is primarily driven by sediment availability, not by wetland elevation, tidal range, local rates of sea-level rise, and significant wave height. Our results suggest that Nature-based Solutions can mitigate coastal wetland vulnerability to sea-level rise, but are effective only in coastal locations where abundant sediment supply is available. 
    more » « less
  2. Abstract The long‐term stability of coastal wetlands is determined by interactions among sea level, plant primary production, sediment supply, and wetland vertical accretion. Human activities in watersheds have significantly altered sediment delivery from the landscape to the coastal ocean, with declines along much of the U.S. East Coast. Tidal wetlands in coastal systems with low sediment supply may have limited ability to keep pace with accelerating rates of sea‐level rise (SLR). Here, we show that rates of vertical accretion and carbon accumulation in nine tidal wetland systems along the U.S. East Coast from Maine to Georgia can be explained by differences in the rate of relative SLR (RSLR), the concentration of suspended sediments in the rivers draining to the coast, and temperature in the coastal region. Further, we show that rates of vertical accretion have accelerated over the past century by between 0.010 and 0.083 mm yr−2, at roughly the same pace as the acceleration of global SLR. We estimate that rates of carbon sequestration in these wetland soils have accelerated (more than doubling at several sites) along with accelerating accretion. Wetland accretion and carbon accumulation have accelerated more rapidly in coastal systems with greater relative RSLR, higher watershed sediment availability, and lower temperatures. These findings suggest that the biogeomorphic feedback processes that control accretion and carbon accumulation in these tidal wetlands have responded to accelerating RSLR, and that changes to RSLR, watershed sediment supply, and temperature interact to determine wetland vulnerability across broad geographic scales. 
    more » « less
  3. Abstract Tidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resilience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation ( Z * MHW ), a physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for the first time at 30 × 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level median Z * MHW and its variability generally increased from north to south as a function of tidal amplitude and relative sea-level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al. (Estuaries and Coasts 42 (1): 85–98, 2019). Supporting a third hypothesis, propagated uncertainty in Z * MHW increased from north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The drivers of Z * MHW and its variability are difficult to determine because several potential causal variables are correlated with latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median Z * MHW and Z * MHW variability, respectively. Watersheds of the Gulf Coast often had propagated Z * MHW uncertainty greater than the tidal amplitude itself emphasizing the diminished practicality of applying Z * MHW as a flooding proxy to microtidal wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses. 
    more » « less
  4. Abstract Subsidence after a subduction zone earthquake can cause major changes in estuarine bathymetry. Here, we quantify the impacts of earthquake‐induced subsidence on hydrodynamics and habitat distributions in a major system, the lower Columbia River Estuary, using a hydrodynamic and habitat model. Model results indicate that coseismic subsidence increases tidal range, with the smallest changes at the coast and a maximum increase of ∼10% in a region of topographic convergence. All modeled scenarios reduce intertidal habitat by 24%–25% and shifts ∼93% of estuarine wetlands to lower‐elevation habitat bands. Incorporating dynamic effects of tidal change from subsidence yields higher estimates of remaining habitat by multiples of 0–3.7, dependent on the habitat type. The persistent tidal change and chronic habitat disturbance after an earthquake poses strong challenges for estuarine management and wetland restoration planning, particularly when coupled with future sea‐level rise effects. 
    more » « less
  5. Abstract Sea‐level dynamics, sediment availability, and marine energy are critical drivers of coastal wetland formation and persistence, but their roles as continental‐scale drivers remain unknown. We evaluated the timing and spatial variability of wetland formation from new and existing cores collected along the Atlantic and Gulf coasts of the United States. Most basal peat ages occurred after sea‐level rise slowed (after ~4,000 years before present), but predominance of sea‐level rise studies may skew age estimates toward older sites. Near‐coastal sites tended to be younger, indicating creation of wetlands through basin infilling and overwash events. Age distributions differed among regions, with younger wetlands in the northeast and southeast corresponding to European colonization and deforestation. Across all cores, wetland age correlated strongly with basal peat depth. Marsh age elucidates the complex interactions between sea‐level rise, sediment supply, and geomorphic setting in determining timing and location of marsh formation and future wetland persistence. 
    more » « less