skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hubbard Brook Experimental Forest: Soil Freeze Study - Tree Growth
The climate is changing in many temperate forests with the amount of forest area dominated by sugar maple experiencing an insulating snowpack expected to shrink between 49 and 95% compared to 1951-2005 values. A reduced snowpack and increased depth and duration of soil frost can injure or kill fine roots, which are essential for plant water and nutrient uptake. These adverse impacts on tree roots can have important impacts on tree growth and ecosystem carbon sequestration. We evaluated the effects of changing winter climate, including snow and soil frost dynamics, by using tree cores to measure sugar maple radial growth rates in the Soil Freezing Study plots at the Hubbard Brook Experimental Forest. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Analysis of these data are published in: Reinmann AB, Susser JR, Demara EMC, and Templer PH. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing. Global Change Biology. 25(2):420-430. https://doi.org/10.1111/gcb.14420  more » « less
Award ID(s):
1637685
PAR ID:
10316991
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). https://doi.org/10.1007/s11027-007-9133-2. Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424. 
    more » « less
  2. In seasonally snow-covered ecosystems such as northern hardwood forests of the northeastern U.S., spring snowmelt is a critical transition period for plant and microbial communities, as well as for the biogeochemical cycling of nitrogen (N). However, it remains unknown how shifting snowmelt dynamics influence soil and plant processing and uptake of N in these forests, which are experiencing reductions in N availability relative to demand, a process known as oligotrophication. We determined the role of changing spring snowmelt timing on root production and N pools and fluxes by manipulating snowmelt timing along a climate elevation gradient at the Hubbard Brook Experimental Forest in New Hampshire. We manually halved or doubled snow water equivalent (SWE) in experimental plots in March of 2022 and 2023 to accelerate or delay by an average of one week, respectively, the onset of spring snowmelt. Earlier snowmelt led to reduced snowpack depth and duration, as well as deeper, more sustained soil frost during the snowmelt period in 2022, but soil freezing did not occur in 2023. Soil nitrate and net nitrification rates were significantly lower with shallower snowpack and earlier snowmelt compared to plots with deeper snow and later snowmelt. Shallower snowpack and early snowmelt were also associated with decreased foliar N concentrations and 15N values, indications that earlier snowmelt contributes to lower N availability relative to plant N uptake and demand. Our study provides evidence that early snowmelt resulting from shallower snowpack contributes to N oligotrophication, primarily through impacts on soil nitrate supply and uptake of N by trees. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. We quantified nitrogen (N) resorption of the two dominant tree species of northern hardwood forests along an elevation gradient using 14 sites at Hubbard Brook Experimental Forest, NH. For these calculations, we also quantified the leaf mass per area for both species, sugar maple and American beech. The original data before averaging for combining with chemistry data is available in an earlier revision of this dataset. Foliar N of sugar maple increased, and N resorption proficiency (NRP) decreased with increasing elevation. In contrast, foliar N and NRP of American beech did not vary significantly with elevation, suggesting that the mechanisms driving patterns of N resorption were distinct between these co-occurring species. While both species exhibited strong correlations between resorption efficiency of C and N, resorption of both elements was much greater for beech than maple. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Data associated with the publication: Conrad-Rooney E, AB Reinmann, PH Templer. Declining Winter Snowpack Offsets Carbon Storage Enhancement from Growing Season Warming in Northern Temperate Forest Ecosystems. Proceedings of the National Academy of Sciences, 2025. This dataset includes soil temperature (winter 2021-2022) and snow depth and frost depth (winter 2022-2023) at the Climate Change Across Seasons Experiment. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Fine litterfall (leaves, twigs, fruits, seeds, etc.) is collected in Watershed 1, Watershed 5, the Throughfall plots and the Bear Brook Watershed reference forest, located to the west of Watershed 6, to quantify carbon and nutrient flux associated with this important pathway. In addition, measurements of area per leaf are combined with counts of leaves for each tree species to quantify leaf area index of the forest. These measurements have facilitated quantification of ice storm effects and species declines (paper birch, sugar maple). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less