skip to main content

Title: Hubbard Brook Experimental Forest: Soil Freeze Study - Tree Growth
Abstract
The climate is changing in many temperate forests with the amount of forest area dominated by sugar maple experiencing an insulating snowpack expected to shrink between 49 and 95%More>>
Creator(s):
; ;
Publisher:
Environmental Data Initiative
Publication Year:
NSF-PAR ID:
10316991
Award ID(s):
1637685
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and durationMore>>
  2. Abstract
    Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Freeze study data. Watershed 1 and Bear Brook trace gas data can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=116. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. These data have been published in: Groffman, P. M., Hardy, J. P., Driscoll, C. T., & Fahey, T. J. (2006). Snow depth, soil freezing, and fluxes of carbon dioxide,More>>
  3. Abstract
    In 1997, as part of a study of the relationships between snow depth, soil freezing and nutrient cycling (http://www.ecostudies.org/people_sci_groffman_snow_summary.html), we established eight 10 x 10-m plots located within four stands; two dominated (80%) by sugar maple and two dominated by yellow birch, with one snow reduction (freeze) and one reference plot in each stand. In 2001, we established eight new 10-m x 10-m plots (4 treatment, 4 reference) in four new sites; two high elevation, north facing and two low elevation, south facing maple-beech-birch stands. To establish plots for the “freeze” study, we cleared minor amounts of understory vegetation from all (both freeze and reference) plots (to facilitate shoveling). We then installed soil solution samplers (zero tension lysimeters), thermistors for soil temperature monitoring, water content (time domain) reflectometers (for measuring soil moisture), soil atmosphere sampling probes, minirhizotron access tubes, and trace gas flux measurement chambers (described below). All plots were equipped with dataloggers to allow for continuous monitoring of soil moisture and temperature. Treatments (keep plots snow free by shoveling through the end of January) were applied in the winters of 1997/98, 1998/99, 2002/2003 and 2003/2004. Measurements of soil nitrate (NO3 -) and ammonium (NH4 +) concentrations, microbial biomassMore>>
  4. Abstract
    Foliage was collected in 2015 and 2017 from red maple trees at the Climate Change Across Seasons Experiment (CCASE) as part of the Hubbard Brook Ecosystem Study (HBES). Analyses of foliar metabolites include polyamines, amino acids, chlorophylls, carotenoids, soluble proteins, soluble inorganic elements, sugars, and total nitrogen and carbon. There are six (11 x 14m) plots in total in this study; two control (plots 1 and 2), two warmed 5 degrees (°) Celsius (C) above ambient throughout the growing season (plots 3 and 4), and two warmed 5 °C in the growing season, with snow removal during the winter to induce soil freezing and then warmed with buried heating cables to create a subsequent thaw (plots 5 and 6). Each soil freeze/thaw cycle includes 72 hours of soil freezing followed by 72 hours of thaw. Four kilometers (km) of heating cable are buried in the soil to warm these four plots. Together, these treatments led to warmer growing season soil temperatures and an increased frequency of soil freeze-thaw cycles (FTCs) in winter. Our goal was to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple trees. These data were gathered asMore>>
  5. Abstract
    Soil atmosphere fluxes of the trace gases; carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF) including 1) the “freeze” study reference plots that provide contrast between stands dominated (80%) by sugar maple versus yellow birch and low and high elevation areas, 2) the Bear Brook Watershed where trace gas sampling is coordinated with long-term monitoring of microbial biomass and activity and 3) watershed 1 where trace gas sampling locations were co-located with long-term microbial biomass and activity monitoring sites that are located near a subset of the lysimeter sites established for the calcium addition study on this watershed. This dataset contains the Watershed 1 and Bear Brook data. Freeze plot trace gas can be found in: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=251. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.