skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hubbard Brook Experimental Forest: Soil Freezing Study (SFS) In Situ Measurements of Snow and Soil Frost Depth
Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). https://doi.org/10.1007/s11027-007-9133-2. Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424.  more » « less
Award ID(s):
1637685
PAR ID:
10316992
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The climate is changing in many temperate forests with the amount of forest area dominated by sugar maple experiencing an insulating snowpack expected to shrink between 49 and 95% compared to 1951-2005 values. A reduced snowpack and increased depth and duration of soil frost can injure or kill fine roots, which are essential for plant water and nutrient uptake. These adverse impacts on tree roots can have important impacts on tree growth and ecosystem carbon sequestration. We evaluated the effects of changing winter climate, including snow and soil frost dynamics, by using tree cores to measure sugar maple radial growth rates in the Soil Freezing Study plots at the Hubbard Brook Experimental Forest. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Analysis of these data are published in: Reinmann AB, Susser JR, Demara EMC, and Templer PH. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing. Global Change Biology. 25(2):420-430. https://doi.org/10.1111/gcb.14420 
    more » « less
  2. Data associated with the publication: Conrad-Rooney E, AB Reinmann, PH Templer. Declining Winter Snowpack Offsets Carbon Storage Enhancement from Growing Season Warming in Northern Temperate Forest Ecosystems. Proceedings of the National Academy of Sciences, 2025. This dataset includes soil temperature (winter 2021-2022) and snow depth and frost depth (winter 2022-2023) at the Climate Change Across Seasons Experiment. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. In seasonally snow-covered ecosystems such as northern hardwood forests of the northeastern U.S., spring snowmelt is a critical transition period for plant and microbial communities, as well as for the biogeochemical cycling of nitrogen (N). However, it remains unknown how shifting snowmelt dynamics influence soil and plant processing and uptake of N in these forests, which are experiencing reductions in N availability relative to demand, a process known as oligotrophication. We determined the role of changing spring snowmelt timing on root production and N pools and fluxes by manipulating snowmelt timing along a climate elevation gradient at the Hubbard Brook Experimental Forest in New Hampshire. We manually halved or doubled snow water equivalent (SWE) in experimental plots in March of 2022 and 2023 to accelerate or delay by an average of one week, respectively, the onset of spring snowmelt. Earlier snowmelt led to reduced snowpack depth and duration, as well as deeper, more sustained soil frost during the snowmelt period in 2022, but soil freezing did not occur in 2023. Soil nitrate and net nitrification rates were significantly lower with shallower snowpack and earlier snowmelt compared to plots with deeper snow and later snowmelt. Shallower snowpack and early snowmelt were also associated with decreased foliar N concentrations and 15N values, indications that earlier snowmelt contributes to lower N availability relative to plant N uptake and demand. Our study provides evidence that early snowmelt resulting from shallower snowpack contributes to N oligotrophication, primarily through impacts on soil nitrate supply and uptake of N by trees. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Snow depth, soil frost depth and snow water content have been measured at several locations at the Hubbard Brook Experimental Forest (HBEF). In October 2010, as part of a study of the relationships between snow depth, soil freezing and nutrient cycling (http://www.ecostudies.org/people_sci_groffman_snow_summary.html), we established 6 20 x 20-m plots (intensive plots) and 14 10 x 10-m plots (extensive plots) following an elevation gradient, with eight of the plots facing north and twelve facing south. Snow and frost depth, and snow water equivalent sampling started in December 2010. Measurements on the extensive plots ended at the conclusion of snow coverage in spring, 2012. Measurements at the 6 intensive plots are ongoing and measurement frequency was increased from approximately bimonthly to approximately weekly beginning in the 2019-2020 snow cover season. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. This dataset contains snow depth and frost depth measurements from the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest. Samples are collected weekly throughout the winter months. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less