skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-steady-state slip rates emerge along evolving restraining bends under constant loading
Recent field studies provide evidence of fault slip-rate variability over time periods of 10–100 k.y., yet researchers do not know how processes internal to the fault system (e.g., fault reorganization) impact records of fault slip rates. In this study, we directly observed fault-system evolution and measured slip-rate histories within a scaled physical experiment of a dextral strike-slip 15° restraining bend representative of a gentle crustal restraining bend. To assess the degree of slip-rate variability at particular sites along the experimental faults, such as would be revealed in a field study, we tracked fault slip rates at specific locations that advected throughout the experiment with accrued fault slip. Slip rates increased or decreased (5%–25% of the applied velocity) both during fault reorganization (e.g., fault growth and abandonment) and as sites migrated to new structural positions. Sites that advected into the restraining bend showed decreased slip rate. While we expect new fault growth to reduce slip rates along nearby fault segments, we document that the growth of new oblique-slip faults can increase strike-slip rates on nearby fault segments. New oblique-slip thrust faults within the experiment accommodated off-fault convergence and unclamped nearby strike-slip segments. The experimental results show that even under a constant loading rate, slip rates at sites located on stable fault segments can vary due to either reorganization elsewhere in the fault system or site advection.  more » « less
Award ID(s):
2040570
PAR ID:
10317064
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Releasing bends along active strike-slip faults display a range of fault patterns that may depend on crustal strength. Scaled physical experiments allow us to directly document the evolution of established releasing bend systems under differing strength conditions. Here, we use a split-box apparatus filled with wet clay of differing strengths to run and analyze releasing bend evolution. Precut vertical discontinuities within the clay slip with right-lateral displacement of the basal plate followed by the development of oblique-slip secondary faults. In contrast to the weaker clay experiment, which produces left-lateral cross faults that facilitate major reorganization of the primary slip pathway, the stronger clay experiment produces negligible cross faults and has a persistent primary slip pathway. Within both experiments, the dip of initially vertical faults shallows due to lateral flow at depth and left-lateral slip develops along normal fault segments that have highly oblique strike. The experiments show that fault systems within weaker strength materials produce greater delocalization of faulting, with both greater number of faults and greater off-fault deformation that can impact hazard. For example, the hot, thin and weak crust hosting the Brawley Seismic Zone accommodates slip along many distributed faults, which is in sharp contrast to the more localized fault network of the Southern Gar Basin in cooler, thicker and stronger crust. The fault patterns observed in the experiments match patterns of crustal examples and may guide future models of fault evolution within relatively strong and weak crust that have differing heat flux and thickness. 
    more » « less
  2. Abstract Topography along strike‐slip fault restraining bends is theoretically self‐limited by erosion, block translation and the expected abandonment of fault bends. However, Denali (6,194 m) and Foraker (5,304 m) are located within a restraining bend of the dextral Denali Fault system. We reveal the role of bend evolution in mountain building with physical experiments scaled to simulate the Alaska Mount McKinley restraining bend (MMRB). Despite the natural complexity of the MMRB, first‐order patterns (of strike‐slip separation rates, uplift and lateral bend migration) from the geologic data align with patterns from scaled experiments. Thermochronology, seismicity, and slip rate data show that the persistence of a single Denali Fault strand through the ~6 Ma MMRB is facilitated by simultaneous advection of crust through the bend and migration of the eastern vertex of the bend. 
    more » « less
  3. Abstract Active traces of the southern Fairweather fault were revealed by light detection and ranging (lidar) and show evidence for transpressional deformation between North America and the Yakutat block in southeast Alaska. We map the Holocene geomorphic expression of tectonic deformation along the southern 30 km of the Fairweather fault, which ruptured in the 1958 moment magnitude 7.8 earthquake. Digital maps of surficial geology, geomorphology, and active faults illustrate both strike-slip and dip-slip deformation styles within a 10°–30° double restraining bend where the southern Fairweather fault steps offshore to the Queen Charlotte fault. We measure offset landforms along the fault and calibrate legacy 14C data to reassess the rate of Holocene strike-slip motion (≥49 mm/yr), which corroborates published estimates that place most of the plate boundary motion on the Fairweather fault. Our slip-rate estimates allow a component of oblique-reverse motion to be accommodated by contractional structures west of the Fairweather fault consistent with geodetic block models. Stratigraphic and structural relations in hand-dug excavations across two active fault strands provide an incomplete paleoseismic record including evidence for up to six surface ruptures in the past 5600 years, and at least two to four events in the past 810 years. The incomplete record suggests an earthquake recurrence interval of ≥270 years—much longer than intervals <100 years implied by published slip rates and expected earthquake displacements. Our paleoseismic observations and map of active traces of the southern Fairweather fault illustrate the complexity of transpressional deformation and seismic potential along one of Earth's fastest strike-slip plate boundaries. 
    more » « less
  4. Oblique convergence along strike-slip faults can lead to both distributed and localized deformation. How focused transpressive deformation is both localized and maintained along sub-vertical wrench structures to create high topography and deep exhumation warrants further investigation. The high peak region of the Hayes Range, central Alaska, USA, is bound by two lithospheric scale vertical faults: the Denali fault to the south and Hines Creek fault to the north. The high topography area has peaks over 4000 m and locally has experienced more than 14 km of Neogene exhumation, yet the mountain range is located on the convex side of the Denali fault Mount Hayes restraining bend, where slip partitioning alone cannot account for this zone of extreme exhumation. Through the application of U-Pb zircon, 40Ar/39Ar (hornblende, muscovite, biotite, and K-feldspar), apatite fission-track, and (U-Th)/He geo-thermochronology, we test whether these two parallel, reactivated suture zone structures are working in tandem to vertically extrude the Between the Hines Creek and Denali faults block on the convex side of the Mount Hayes restraining bend. We document that since at least 45 Ma, the Denali fault has been bent and localized in a narrow fault zone (<160 m) with a significant dip-slip component, the Mount Hayes restraining bend has been fixed to the north side of the Denali fault, and that the Between the Hines Creek and Denali faults block has been undergoing vertical extrusion as a relatively coherent block along the displacement “free faces” of two lithospheric scale suture zone faults. A bent Denali fault by ca. 45 Ma supports the long-standing Alaska orocline hypothesis that has Alaska bent by ca. 44 Ma. Southern Alaska is currently converging at ~4 mm/yr to the north against the Denali fault and driving vertical extrusion of the Between the Hines Creek and Denali faults block and deformation north of the Hines Creek fault. We apply insights ascertained from the Between the Hines Creek and Denali faults block to another region in southern Alaska, the Fairweather Range, where extreme topography and persistent exhumation is also located between two sub-parallel faults, and propose that this region has likely undergone vertical extrusion along the free faces of those faults. 
    more » « less
  5. Temporal and spatial variations of tectonic rock uplift are generally thought to be the main controls on long-term erosion rates in various landscapes. However, rivers continuously lengthen and capture drainages in strike-slip fault systems due to ongoing motion across the fault, which can induce changes in landscape forms, drainage networks, and local erosion rates. Located along the restraining bend of the San Andreas Fault, the San Bernardino Mountains provide a suitable location for assessing the influence of topographic disequilibrium from perturbations by tectonic forcing and channel reorganization on measured erosion rates. In this study, we measured 17 new basin-averaged erosion rates using cosmogenic 10Be in river sands (hereafter, 10Be-derived erosion rates) and compiled 31 10Be-derived erosion rates from previous work. We quantify the degree of topographic disequilibrium using topographic analysis by examining hillslope and channel decoupling, the areal extent of pre-uplift surface, and drainage divide asymmetry across various landscapes. Similar to previous work, we find that erosion rates generally increase from north to south across the San Bernardino Mountains, reflecting a southward increase in tectonic activity. However, a comparison between 10Be-derived erosion rates and various topographic metrics in the southern San Bernardino Mountains suggests that the presence of transient landscape features such as relict topography and drainage-divide migration may explain local variations in 10Be-derived erosion rates. Our work shows that coupled analysis of erosion rates and topographic metrics provides tools for assessing the influence of tectonic uplift and channel reorganization on landscape evolution and 10Be-derived erosion rates in an evolving strike-slip restraining bend. 
    more » « less