This content will become publicly available on February 23, 2023
- Award ID(s):
- 1755286
- Publication Date:
- NSF-PAR ID:
- 10317086
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1969
- ISSN:
- 0962-8452
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The Fusarium oxysporum species complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12 F. oxysporum isolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall, F. oxysporum kinomes are the largest, facilitatedmore »
-
Anthropogenic landscape modification such as urbanization can expose wildlife to toxicants, with profound behavioural and health effects. Toxicant exposure can alter the local transmission of wildlife diseases by reducing survival or altering immune defence. However, predicting the impacts of pathogens on wildlife across their ranges is complicated by heterogeneity in toxicant exposure across the landscape, especially if toxicants alter wildlife movement from toxicant-contaminated to uncontaminated habitats. We developed a mechanistic model to explore how toxicant effects on host health and movement propensity influence range-wide pathogen transmission, and zoonotic exposure risk, as an increasing fraction of the landscape is toxicant-contaminated. Whenmore »
-
Animals native to the hypoxic and cold environment at high altitude provide an excellent opportunity to elucidate the integrative mechanisms underlying the adaptive evolution and plasticity of complex traits. The capacity for aerobic thermogenesis can be a critical determinant of survival for small mammals at high altitude, but the physiological mechanisms underlying the evolution of this performance trait remain unresolved. We examined this issue by comparing high-altitude deer mice ( Peromyscus maniculatus ) with low-altitude deer mice and white-footed mice ( P. leucopus ). Mice were bred in captivity and adults were acclimated to each of four treatments: warm (25°C)more »
-
Resistance is a key determinant in interactions between hosts and their parasites. Understanding the amount and distribution of variation in this trait between strains can provide insights into (co)evolutionary processes and their potential to shape patterns of diversity in natural populations. Using controlled inoculation in experimental mass cultures, we investigated the quantitative variation in resistance to the bacterial parasite Holospora undulata across a worldwide collection of strains of its ciliate host Paramecium caudatum . We combined the observed variation with available information on the phylogeny and biogeography of the strains. We found substantial variation in resistance among strains, with upper-boundmore »
-
Abstract Host competence, or how well an individual transmits pathogens, varies substantially within and among animal populations. As this variation can alter the course of epidemics and epizootics, revealing its underlying causes will help predict and control the spread of disease. One host trait that could drive heterogeneity in competence is host tolerance, which minimizes fitness losses during infection without decreasing pathogen load. In many cases, tolerance should increase competence by extending infectious periods and enabling behaviors that facilitate contact among hosts. However, we argue that the links between tolerance and competence are more varied. Specifically, the different physiological andmore »