skip to main content


Title: Host adaptation drives genetic diversity in a vector-borne disease system.
The range of hosts a pathogen can infect is a key trait influencing human disease risk and reservoir host infection dynamics. Borrelia burgdorferi sensu stricto (Bb), an emerging zoonotic pathogen, causes Lyme disease and is widely considered a host generalist, commonly infecting mammals and birds. Yet the extent of intraspecific variation in Bb host breadth, its role in determining host competence and potential implications to human infection remain unclear. We conducted a long-term study of Bb diversity, defined by the polymorphic ospC locus, across white-footed mice, passerine birds, and tick vectors leveraging long-read amplicon sequencing. Our results reveal strong variation in host breadth across Bb genotypes, exposing a spectrum of genotype-specific host-adapted phenotypes. We found support for multiple niche polymorphism maintaining Bb diversity in nature and little evidence of temporal shifts in genotype dominance, as would be expected under negative frequency-dependent selection. Passerine birds support the circulation of several human invasive strains in the local tick population and harbor greater Bb genotypic diversity compared to white-footed mice. Mouse-adapted Bb genotypes exhibited longer persistence in individual mice compared to non-adapted genotypes and infection communities infecting individual mice preferentially became dominated by mouse-adapted genotypes over time. We posit that intraspecific variation in Bb host breadth and specificity helps maintain overall species fitness in response to transmission by a generalist vector. Because pathogen genotypes vary in host breadth and result in diverse human disease manifestations, our findings indicate that a more nuanced definition of ‘host competence’ incorporating local genotype frequency is warranted.  more » « less
Award ID(s):
1755370
NSF-PAR ID:
10382426
Author(s) / Creator(s):
Date Published:
Journal Name:
bioRxiv
ISSN:
2692-8205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The range of hosts a pathogen can infect is a key trait influencing human disease risk and reservoir host infection dynamics. Borrelia burgdorferi sensu stricto (Bb), an emerging zoonotic pathogen, causes Lyme disease and is widely considered a host generalist, commonly infecting mammals and birds. Yet the extent of intraspecific variation in Bb host breadth, its role in determining host competence and potential implications to human infection remain unclear. We conducted a long-term study of Bb diversity, defined by the polymorphic ospC locus, across white-footed mice, passerine birds, and tick vectors leveraging long-read amplicon sequencing. Our results reveal strong variation in host breadth across Bb genotypes, exposing a spectrum of genotype-specific host-adapted phenotypes. We found support for multiple niche polymorphism maintaining Bb diversity in nature and little evidence of temporal shifts in genotype dominance, as would be expected under negative frequency-dependent selection. Passerine birds support the circulation of several human invasive strains in the local tick population and harbor greater Bb genotypic diversity compared to white-footed mice. Mouse-adapted Bb genotypes exhibited longer persistence in individual mice compared to non-adapted genotypes and infection communities infecting individual mice preferentially became dominated by mouse-adapted genotypes over time. We posit that intraspecific variation in Bb host breadth and specificity helps maintain overall species fitness in response to transmission by a generalist vector. Because pathogen genotypes vary in host breadth and result in diverse human disease manifestations, our findings indicate that a more nuanced definition of ‘host competence’ incorporating local genotype frequency is warranted. 
    more » « less
  2. Abstract

    The range of hosts a pathogen can infect is a key trait, influencing human disease risk and reservoir host infection dynamics. Borrelia burgdorferi sensu stricto (Bb), an emerging zoonotic pathogen, causes Lyme disease and is widely considered a host generalist, commonly infecting mammals and birds. Yet the extent of intraspecific variation in Bb host breadth, its role in determining host competence, and potential implications for human infection remain unclear. We conducted a long-term study of Bb diversity, defined by the polymorphic ospC locus, across white-footed mice, passerine birds, and tick vectors, leveraging long-read amplicon sequencing. Our results reveal strong variation in host breadth across Bb genotypes, exposing a spectrum of genotype-specific host-adapted phenotypes. We found support for multiple niche polymorphism, maintaining Bb diversity in nature and little evidence of temporal shifts in genotype dominance, as would be expected under negative frequency-dependent selection. Passerine birds support the circulation of several human-invasive strains (HISs) in the local tick population and harbor greater Bb genotypic diversity compared with white-footed mice. Mouse-adapted Bb genotypes exhibited longer persistence in individual mice compared with nonadapted genotypes. Genotype communities infecting individual mice preferentially became dominated by mouse-adapted genotypes over time. We posit that intraspecific variation in Bb host breadth and adaptation helps maintain overall species fitness in response to transmission by a generalist vector.

     
    more » « less
  3. Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi ( Bb ), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C ( ospC ) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites. 
    more » « less
  4. Lyme disease (LD), the most prevalent tick-borne disease of humans in the Northern Hemisphere, is caused by the spirochetal bacterium of Borreliella burgdorferi ( Bb ) sensu lato complex. In nature, Bb spirochetes are continuously transmitted between Ixodes ticks and mammalian or avian reservoir hosts. Peromyscus leucopus mice are considered the primary mammalian reservoir of Bb in the United States. Earlier studies demonstrated that experimentally infected P. leucopus mice do not develop disease. In contrast, C3H mice, a widely used laboratory strain of Mus musculus in the LD field, develop severe Lyme arthritis. To date, the exact tolerance mechanism of P. leucopus mice to Bb -induced infection remains unknown. To address this knowledge gap, the present study has compared spleen transcriptomes of P. leucopus and C3H/HeJ mice infected with Bb strain 297 with those of their respective uninfected controls. Overall, the data showed that the spleen transcriptome of Bb -infected P. leucopus mice was much more quiescent compared to that of the infected C3H mice. To date, the current investigation is one of the few that have examined the transcriptome response of natural reservoir hosts to Borreliella infection. Although the experimental design of this study significantly differed from those of two previous investigations, the collective results of the current and published studies have consistently demonstrated very limited transcriptomic responses of different reservoir hosts to the persistent infection of LD pathogens. Importance The bacterium Borreliella burgdorferi ( Bb ) causes Lyme disease, which is one of the emerging and highly debilitating human diseases in countries of the Northern Hemisphere. In nature, Bb spirochetes are maintained between hard ticks of Ixodes spp. and mammals or birds. In the United States, the white-footed mouse, Peromyscus leucopus , is one of the main Bb reservoirs. In contrast to humans and laboratory mice (e.g., C3H mice), white-footed mice rarely develop clinical signs (disease) despite being (persistently) infected with Bb . How the white-footed mouse tolerates Bb infection is the question that the present study has attempted to address. Comparisons of genetic responses between Bb -infected and uninfected mice demonstrated that, during a long-term Bb infection, C3H mice reacted much stronger, whereas P. leucopus mice were relatively unresponsive. 
    more » « less
  5. A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology. 
    more » « less