Purpose of Review This paper focuses on the advances in the resilience of electricity systems and energy markets. The objective is to identify how the progress on system resilience may influence market rules while uncovering the gaps in the literature. Recent Findings This review distills three findings. First, significant advances have been achieved both in the design and configuration of power systems for resilience. Second, topological and architectural advances appear isolated from market operations. Third, there is room to integrate self-healing resilience into power systems and bridge the bifurcation between increasing network resilience and having the market adequately value resilience. Summary Evidently, the incidences of disruptions to electricity networks are on the rise, making a change from having a merely reliable electricity network to one that is resilient and adaptive a necessity. This review showcases the qualitative value inherent in processes to enhance adaptive resilience while promoting the requisite signals for power market integration.
more »
« less
Meta-analysis of the strategies for self-healing and resilience in power systems
This paper presents a survey of the literature on the strategies to enhance the resilience of power systems while shedding lights on the research gaps. Using a deductive methodology on the literature covering the resilience of power systems, we reviewed more than two hundred peer-reviewed articles spanning the 2010–2019 decade. We find that there is vacuum on the level of integration that considers the interdependence of local or decentralized decision making in an adaptive power system. This gap is widened by the absence of policies to enhance resilience in power networks. While there is significant coverage and convergence of research on algorithms for solving the multi-objective problem in optimization routines, there are still uncharted territories on how to incorporate system degradation while designing these self-restoration systems. We posit that a shift to a smarter, cleaner and more resilient power network requires sustained investments rather than disaster-induced responses.
more »
« less
- Award ID(s):
- 1847077
- PAR ID:
- 10317109
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Advances in applied energy
- Volume:
- 4
- ISSN:
- 2666-7924
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The discourse on resilience, currently at the forefront of research and implementation in a wide variety of fields, is confusing because of its multi-disciplinary/spatial/temporal nature. Resilience analysis is a discipline that allows the assessment and enhancement of the coping and recovery behaviors of systems when subjected to short-lived high-impact external shocks leading to partial or complete failure. This paper, meant for pedagogical teaching and research formulation, starts by providing an overview of different aspects of resilience in general and then focuses on communities and regions that are complex adaptive systems (CAS) involving multiple engineered infrastructures providing essential services to local inhabitants and adapted to available natural resources and social requirements. Next, for objective analysis and assessment, it is proposed that resilience be characterized by four different quantifiable sub-attributes. This paper then describes the standard technocentric manner in which different temporal phases during and in the aftermath of disasters are generally visualized and analyzed, and discusses how these relate to reliability and risk analyses. Subsequently, two prevalent types of frameworks are described and representative literature reviewed: (i) those that aim at improving general resilience via soft methods such as subjective means (interviews, narratives) and census data, and (ii) those that are meant to enhance specific resilience under certain threat scenarios using hard/objective methods such as data-driven analysis and performance-predictive modeling methods, akin to resource allocation problems in operations research. Finally, the need for research into an integrated framework is urged; one that could potentially combine the strengths of both approaches.more » « less
-
There has been a growing interest in research on how to define and build indicators of resilience to address challenges associated with sea-level rise. Most of the proposed methods rely on lagging indicators constructed based on the historical performance of an infrastructure sub-system. These indicators are traditionally utilized to build curves that describe the past response of the sub-system to stressors; these curves are then used to predict the future resilience of the sub-system to hypothesized events. However, there is now a growing concern that this approach cannot provide the best insights for adaptive decision-making across the broader context of multiple sub-systems and stakeholders. As an alternative, leading indicators that are built on the structural characteristics that embody system resilience have been gaining in popularity. This structure-based approach can reveal problems and gaps in resilience planning and shed light on the effectiveness of potential adaptation activities. Here, we survey the relevant literature for these leading indicators within the context of sea-level rise and then synthesize the gained insights into a broader examination of the current research challenges. We propose research directions on leveraging leading indicators as effective instruments for incorporating resilience into integrated decision-making on the adaptation of infrastructure systems.more » « less
-
null (Ed.)The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.more » « less
-
Power systems serve social communities that consist of residential, commercial, and industrial customers. As a result, the disaster resilience of a power system should account for social community resilience. The social behavior and psychological features of all stakeholders involved in a disaster influence the level of power system preparedness, mitigation, recovery, adaptability, and resilience. Hence, there is a need to consider the social community's effect on the power system and the dependence between them in determining a power system's resilient to human-made and natural hazards. The social community, such as a county, city, or state, consists of various stakeholders, e.g., social consumers, social prosumers, and utilities. In this paper, we develop a multi-dimensional output-oriented method to measure resilience. The three key ideas for measuring power system resilience are the multi-dimensionality, output-oriented, and degraded functionality aspects of the power system. To this end, we develop an artificial society based on neuroscience, social science, and psychological theories to model the behavior of consumers and prosumers and the interdependence between power system resilience, comsumer and prosumer well-being, and community capital. Both mental health and physical health are used as metrics of well-being, while the level of cooperation is used to measure community capital resilience.more » « less