skip to main content


Title: A variant selection framework for genome graphs
Abstract Motivation Variation graph representations are projected to either replace or supplement conventional single genome references due to their ability to capture population genetic diversity and reduce reference bias. Vast catalogues of genetic variants for many species now exist, and it is natural to ask which among these are crucial to circumvent reference bias during read mapping. Results In this work, we propose a novel mathematical framework for variant selection, by casting it in terms of minimizing variation graph size subject to preserving paths of length α with at most δ differences. This framework leads to a rich set of problems based on the types of variants [e.g. single nucleotide polymorphisms (SNPs), indels or structural variants (SVs)], and whether the goal is to minimize the number of positions at which variants are listed or to minimize the total number of variants listed. We classify the computational complexity of these problems and provide efficient algorithms along with their software implementation when feasible. We empirically evaluate the magnitude of graph reduction achieved in human chromosome variation graphs using multiple α and δ parameter values corresponding to short and long-read resequencing characteristics. When our algorithm is run with parameter settings amenable to long-read mapping (α = 10 kbp, δ = 1000), 99.99% SNPs and 73% SVs can be safely excluded from human chromosome 1 variation graph. The graph size reduction can benefit downstream pan-genome analysis. Availability and implementation https://github.com/AT-CG/VF. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1816027
NSF-PAR ID:
10317150
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bioinformatics
Volume:
37
Issue:
Supplement_1
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purugganan, Michael (Ed.)
    Abstract Structural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact that SVs contribute substantially to phenotypes. In this study, we discovered SVs across a population sample of 347 high-coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-read data set, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among data sets revealed different features of genome variability. For example, genome alignment identified a large (∼4.3 Mb) inversion in indica rice varieties relative to japonica varieties, and long-read analyses suggest that ∼9% of genes from the outgroup (O. longistaminata) are hemizygous. We focused, however, on the resequencing sample to investigate the population genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs. However, the site-frequency spectrum of each SV type—which included inversions, duplications, deletions, translocations, and mobile element insertions—was skewed toward lower frequency variants than synonymous SNPs, suggesting that SVs may be predominantly deleterious. Among transposable elements, SINE and mariner insertions were found at especially low frequency. We also used SVs to study domestication by contrasting between rice and O. rufipogon. Cultivated genomes contained ∼25% more derived SVs and mobile element insertions than O. rufipogon, indicating that SVs contribute to the cost of domestication in rice. Peaks of SV divergence were enriched for known domestication genes, but we also detected hundreds of genes gained and lost during domestication, some of which were enriched for traits of agronomic interest. 
    more » « less
  2. Birol, Inanc (Ed.)
    Abstract Summary Ribbon is an alignment visualization tool that shows how alignments are positioned within both the reference and read contexts, giving an intuitive view that enables a better understanding of structural variants and the read evidence supporting them. Ribbon was born out of a need to curate complex structural variant calls and determine whether each was well supported by long-read evidence, and it uses the same intuitive visualization method to shed light on contig alignments from genome-to-genome comparisons. Availability and implementation Ribbon is freely available online at http://genomeribbon.com/ and is open-source at https://github.com/marianattestad/ribbon. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract

    Structural variants (SVs) can promote speciation by directly causing reproductive isolation or by suppressing recombination across large genomic regions. Whereas examples of each mechanism have been documented, systematic tests of the role of SVs in speciation are lacking. Here, we take advantage of long‐read (Oxford nanopore) whole‐genome sequencing and a hybrid zone between twoLycaeidesbutterfly taxa (L.melissaand Jackson HoleLycaeides) to comprehensively evaluate genome‐wide patterns of introgression for SVs and relate these patterns to hypotheses about speciation. We found >100,000 SVs segregating within or between the two hybridizing species. SVs and SNPs exhibited similar levels of genetic differentiation between species, with the exception of inversions, which were more differentiated. We detected credible variation in patterns of introgression among SV loci in the hybrid zone, with 562 of 1419 ancestry‐informative SVs exhibiting genomic clines that deviated from null expectations based on genome‐average ancestry. Overall, hybrids exhibited a directional shift towards Jackson HoleLycaeidesancestry at SV loci, consistent with the hypothesis that these loci experienced more selection on average than SNP loci. Surprisingly, we found that deletions, rather than inversions, showed the highest skew towards excess ancestry from Jackson HoleLycaeides. Excess Jackson HoleLycaeidesancestry in hybrids was also especially pronounced for Z‐linked SVs and inversions containing many genes. In conclusion, our results show that SVs are ubiquitous and suggest that SVs in general, but especially deletions, might disproportionately affect hybrid fitness and thus contribute to reproductive isolation.

     
    more » « less
  4. Stamatakis, Alexandros (Ed.)
    Abstract Motivation Comparative genome analysis of two or more whole-genome sequenced (WGS) samples is at the core of most applications in genomics. These include the discovery of genomic differences segregating in populations, case-control analysis in common diseases and diagnosing rare disorders. With the current progress of accurate long-read sequencing technologies (e.g. circular consensus sequencing from PacBio sequencers), we can dive into studying repeat regions of the genome (e.g. segmental duplications) and hard-to-detect variants (e.g. complex structural variants). Results We propose a novel framework for comparative genome analysis through the discovery of strings that are specific to one genome (‘samples-specific’ strings). We have developed a novel, accurate and efficient computational method for the discovery of sample-specific strings between two groups of WGS samples. The proposed approach will give us the ability to perform comparative genome analysis without the need to map the reads and is not hindered by shortcomings of the reference genome and mapping algorithms. We show that the proposed approach is capable of accurately finding sample-specific strings representing nearly all variation (>98%) reported across pairs or trios of WGS samples using accurate long reads (e.g. PacBio HiFi data). Availability and implementation Data, code and instructions for reproducing the results presented in this manuscript are publicly available at https://github.com/Parsoa/PingPong. Supplementary information Supplementary data are available at Bioinformatics Advances online. 
    more » « less
  5. Structural variants (SVs) account for a large amount of sequence variability across genomes and play an important role in human genomics and precision medicine. Despite intense efforts over the years, the discovery of SVs in individuals remains challenging due to the diploid and highly repetitive structure of the human genome, and by the presence of SVs that vastly exceed sequencing read lengths. However, the recent introduction of low-error long-read sequencing technologies such as PacBio HiFi may finally enable these barriers to be overcome. Here we present SV discovery with sample-specific strings (SVDSS)—a method for discovery of SVs from long-read sequencing technologies (for example, PacBio HiFi) that combines and effectively leverages mapping-free, mapping-based and assembly-based methodologies for overall superior SV discovery performance. Our experiments on several human samples show that SVDSS outperforms state-of-the-art mapping-based methods for discovery of insertion and deletion SVs in PacBio HiFi reads and achieves notable improvements in calling SVs in repetitive regions of the genome. 
    more » « less