Abstract Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.
more »
« less
Simultaneous Synthesis, Modification, and DFT Calculation of Three‐Color Lead Halide Perovskite Phosphors for Improving Stability and Luminous Efficiency of WLEDs
Abstract The all‐inorganic metal halide perovskite CsPbX3(X = Cl, Br, and I) has received extensive attention in the field of white light‐emitting diodes (WLEDs) due to its high luminous intensity and high color purity. However, the shortcoming of poor stability directly affects the luminous performance of the WLED devices and reduces their luminous efficiency, which has become an urgent problem to be solved. Here, three‐color lead halide perovskite phosphors (blue‐emitting CsPbBr3synthesized at 20 °C (CPB‐20), green‐emitting CsPbBr3‐80 (CPB‐80)/CsPbBr3:SCN−(CPB:SCN−), and red‐emitting PEA2PbBr4(PPB)/PEA2PbBr4:Mn2+(PPB:Mn2+)) with higher stability and luminous intensity are simultaneously prepared and applied in WLEDs. Density functional theory is used to optimize the structures of CsPbBr3and PEA2PbBr4, and to calculate the work function, optical properties, and charge density difference. Not only the WLED devices with three‐color lead halide perovskite phosphors are constructed, but also WLED devices from warm white to cold white are realized by tuning the ratio of the different emissions, and a superior color quality (color rendering index of 96) and ideal correlated color temperature (CCT of 9376 K) are achieved. This work will set the stage for exploring low‐cost, environmentally friendly, high‐performance WLEDs.
more »
« less
- Award ID(s):
- 1945558
- PAR ID:
- 10362289
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Metal halide perovskites and perovskite‐related organic metal halide hybrids (OMHHs) have recently emerged as a new class of luminescent materials for light emitting diodes (LEDs), owing to their unique and remarkable properties, including near‐unity photoluminescence quantum efficiencies, highly tunable emission colors, and low temperature solution processing. While substantial progress has been made in developing monochromatic LEDs with electroluminescence across blue, green, red, and near‐infrared regions, achieving highly efficient and stable white electroluminescence from a single LED remains a challenging and under‐explored area. Here, a facile approach to generating white electroluminescence is reported by combining narrow sky‐blue emission from metal halide perovskites and broadband orange/red emission from zero‐dimensional (0D) OMHHs. For the proof of concept, utilizing TPPcarz+passivated two‐dimensional (2D) CsPbBr3nanoplatelets (NPLs) as sky blue emitter and 0D TPPcarzSbBr4as orange/red emitter (TPPcarz+= triphenyl (9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium), white LEDs (WLEDs) with a solution processed bilayer structure have been fabricated to exhibit a peak external quantum efficiency (EQE) of 4.8% and luminance of 1507 cd m−2at the Commission Internationale de L'Eclairage (CIE) coordinate of (0.32, 0.35). This work opens a new pathway for creating highly efficient and stable WLEDs using metal halide perovskites and related materials.more » « less
-
Optically pumped white light-emitting diodes (WLEDs), consisting of blue/ultraviolet LED chips and down conversion phosphors, have a wide range of applications in our daily life, such as full color display and solid-state lighting. While remarkable progress in light quality, device efficiency, and lifetime has been achieved during the last two decades, many challenges remain in optically pumped WLEDs, and searching for low cost high performance down conversion phosphors is still of great interest. Recently, metal halide perovskites have emerged as a highly promising new generation of light emitters for their exceptional optical properties with high quantum efficiencies and color tunability, which have also inspired researchers to investigate their derivatives. In this perspective, we briefly review the progress during the last few years in the development of metal halide perovskites and perovskite-related materials as down conversion phosphors for optically pumped WLEDs. We also highlight some major issues and challenges that need to be addressed to enable perovskite-based light emitters to possibly replace currently used rare-earth doped inorganic phosphors and quantum dots.more » « less
-
Abstract Doping of CsPbBr3perovskite nanocrystals (PNCs) to achieve excellent material properties is accelerating due to their increasing use in optoelectronic devices. Herein, a novel composite of CsPbBr3PNCs with nickel thiocyanate Ni(SCN)2is reported, exhibiting stronger photoluminescence (PL) and more extended stability. The addition of Ni(SCN)2at different molar concentrations reduces the surface trap states of the host PNCs. Therefore, the microstrain, dislocation density, PL emission linewidth, and Urbach energy decrease, resulting in an increased photoluminescence quantum yield (PLQY) from 72% to high above 90%. When stored in the ambient atmosphere for 120 days, the PLQY of doped PNCs is maintained by more than four times compared to host PNCs. A combination of 3D‐printed conversion layers containing green‐, yellow‐, and red‐emitting doped PNCs with blue light‐emitting diodes results in stable white light with superior color qualities. Hence, new composites with desired properties are developed as an alternative to conventional color phosphors.more » « less
-
Abstract Blue electroluminescence is highly desired for emerging light‐emitting devices for display applications and optoelectronics in general. However, saturated, efficient, and stable blue emission has been challenging to achieve, particularly in mixed‐halide perovskites, where intrinsic ion motion and halide segregation compromises spectral purity. Here, CsPbBr3−xClxperovskites, polyelectrolytes, and a salt additive are leveraged to demonstrate pure blue emission from single‐layer light‐emitting electrochemical cells (LECs). The electrolytes transport the ions from salt additives, enhancing charge injection and stabilizing the inherent perovskite emissive lattice for highly pure and sustained blue emission. Substituting Cl into CsPbBr3tunes the perovskite luminescence from green through blue. Sky blue and saturated blue devices produce International Commission on Illumination coordinates of (0.105, 0.129) and (0.136, 0.068), respectively, with the latter meeting the US National Television Committee standard for the blue primary. Likewise, maximum luminances of 2900 and 1000 cd m−2, external quantum efficiencies (EQEs) of 4.3% and 3.9%, and luminance half‐lives of 5.7 and 4.9 h are obtained for sky blue and saturated blue devices, respectively. Polymer and LiPF6inclusion increases photoluminescence efficiency, suppresses halide segregation, induces thin‐film smoothness and uniformity, and reduces crystallite size. Overall, these devices show superior performance among blue perovskite light‐emitting diodes (PeLEDs) and general LECs.more » « less
An official website of the United States government
