skip to main content

This content will become publicly available on December 1, 2022

Title: Exploring the relationship between mobility and COVID− 19 infection rates for the second peak in the United States using phase-wise association
Abstract Human mobility plays an important role in the dynamics of infectious disease spread. Evidence from the initial nationwide lockdowns for COVID− 19 indicates that restricting human mobility is an effective strategy to contain the spread. While a direct correlation was observed early on, it is not known how mobility impacted COVID− 19 infection growth rates once lockdowns are lifted, primarily due to modulation by other factors such as face masks, social distancing, and the non-linear patterns of both mobility and infection growth. This paper introduces a piece-wise approach to better explore the phase-wise association between state-level COVID− 19 incidence data and anonymized mobile phone data for various states in the United States. Prior literature analyzed the linear correlation between mobility and the number of cases during the early stages of the pandemic. However, it is important to capture the non-linear dynamics of case growth and mobility to be usable for both tracking and forecasting COVID− 19 infections, which is accomplished by the piece-wise approach. The associations between mobility and case growth rate varied widely for various phases of the epidemic curve when the stay-at-home orders were lifted. The mobility growth patterns had a strong positive association of 0.7 with the growth in the more » number of cases, with a lag of 5 to 7 weeks, for the fast-growth phase of the pandemic, for only 20 states that had a peak between July 1st and September 30, 2020. Overall though, mobility cannot be used to predict the rise in the number of cases after initial lockdowns have been lifted. Our analysis explores the gradual diminishing value of mobility associations in the later stage of the outbreak. Our analysis indicates that the relationship between mobility and the increase in the number of cases, once lockdowns have been lifted, is tenuous at best and there is no strong relationship between these signals. But we identify the remnants of the last associations in specific phases of the growth curve. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1650551 2027688 1429526
Publication Date:
NSF-PAR ID:
10317279
Journal Name:
BMC Public Health
Volume:
21
Issue:
1
ISSN:
1471-2458
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Containing the COVID-19 pandemic while balancing the economy has proven to be quite a challenge for the world. We still have limited understanding of which combination of policies have been most effective in flattening the curve; given the challenges of the dynamic and evolving nature of the pandemic, lack of quality data etc. This paper introduces a novel data mining-based approach to understand the effects of different non-pharmaceutical interventions in containing the COVID-19 infection rate. We used the association rule mining approach to perform descriptive data mining on publicly available data for 50 states in the United States tomore »understand the similarity and differences among various policies and underlying conditions that led to transitions between different infection growth curve phases. We used a multi-peak logistic growth model to label the different phases of infection growth curve. The common trends in the data were analyzed with respect to lockdowns, face mask mandates, mobility, and infection growth. We observed that face mask mandates combined with mobility reduction through moderate stay-at-home orders were most effective in reducing the number of COVID-19 cases across various states.

    « less
  2. The policy induced decline of human mobility has been recognised as effective in controlling the spread of COVID-19, especially in the initial stage of the outbreak, although the relationship among mobility, policy implementation, and virus spread remains contentious. Coupling the data of confirmed COVID-19 cases with the Google mobility data in Australia, we present a state-level empirical study to: (1) inspect the temporal variation of the COVID-19 spread and the change of human mobility adherent to social restriction policies; (2) examine the extent to which different types of mobility are associated with the COVID-19 spread in eight Australian states/territories; andmore »(3) analyse the time lag effect of mobility restriction on the COVID-19 spread. We find that social restriction policies implemented in the early stage of the pandemic controlled the COVID-19 spread effectively; the restriction of human mobility has a time lag effect on the growth rates of COVID-19, and the strength of the mobility-spread correlation increases up to seven days after policy implementation but decreases afterwards. The association between human mobility and COVID-19 spread varies across space and time and is subject to the types of mobility. Thus, it is important for government to consider the degree to which lockdown conditions can be eased by accounting for this dynamic mobility-spread relationship.« less
  3. Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patternsmore »and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.« less
  4. The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this article is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance ( D v ) and the activity density ( D a ) are used to quantify and evaluate human activities for 193 United States counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure ofmore »the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks’ lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner.« less
  5. Abstract Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two inter-related public health challenges of immense social impact which have not been adequately addressed (1) Inference Challenge assuming that there are N census blocks (nodes) in the city, and given an initial infection at any set of nodes, e.g. any N of possible single node infections, any $$N(N-1)/2$$ N ( N - 1 ) / 2 ofmore »possible two node infections, etc, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pair-wise, binary) type, where each node represents a census tract and each edge factor represents the strength of the pairwise interaction between a pair of nodes, e.g. representing the inter-node travel, road closure and related, and each local bias/field represents the community level of immunization, acceptance of the social distance and mask wearing practice, etc. Resolving the Inference Challenge requires finding the Maximum-A-Posteriory (MAP), i.e. most probable, state of the Ising Model constrained to the set of initially infected nodes. (An infected node is in the $$+ \, 1$$ + 1 state and a node which remained safe is in the $$- \, 1$$ - 1 state.) We show that almost all attractive Ising Models on dense graphs result in either of the two possibilities (modes) for the MAP state: either all nodes which were not infected initially became infected, or all the initially uninfected nodes remain uninfected (susceptible). This bi-modal solution of the Inference Challenge allows us to re-state the Prevention Challenge as the following tractable convex programming : for the bare Ising Model with pair-wise and bias factors representing the system without prevention measures, such that the MAP state is fully infected for at least one of the initial infection patterns, find the closest, for example in $$l_1$$ l 1 , $$l_2$$ l 2 or any other convexity-preserving norm, therefore prevention-optimal, set of factors resulting in all the MAP states of the Ising model, with the optimal prevention measures applied, to become safe. We have illustrated efficiency of the scheme on a quasi-realistic model of Seattle. Our experiments have also revealed useful features, such as sparsity of the prevention solution in the case of the $$l_1$$ l 1 norm, and also somehow unexpected features, such as localization of the sparse prevention solution at pair-wise links which are NOT these which are most utilized/traveled.« less