In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July–December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July–December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July–December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.
more »
« less
Assessing the Impacts of COVID-19 and Social Isolation on Mental Health in the United States of America
The COVID-19 pandemic has had a devastating impact on the world at large with over 750 million cases and almost 7 million deaths reported thus far. Of those, over 100 million cases and 1 million deaths have occurred in the United States of America (USA). The mental health of the general population has been impacted by several aspects of the pandemic including lockdowns, media sensationalism, social isolation, and spread of the disease. In this paper, we examine the associations that social isolation and COVID-19 infection and related death had with the prevalence of anxiety and depression in the general population of the USA in a state-by-state multiple time-series analysis. Vector Error Correction Models are estimated and we subsequently evaluated the coefficients of the estimated models and calculated their impulse response functions for further interpretation. We found that COVID-19 incidence was positively associated with anxiety across the studied period for a majority of states. Variables related to social isolation had a varied effect depending on the state being considered.
more »
« less
- Award ID(s):
- 2028297
- PAR ID:
- 10522643
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- COVID
- Volume:
- 3
- Issue:
- 6
- ISSN:
- 2673-8112
- Page Range / eLocation ID:
- 807 to 830
- Subject(s) / Keyword(s):
- COVID-19 social isolation mental health vector error correction model impulse response function
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Background The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. Methods We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). Results This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. Conclusions To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation.more » « less
-
null (Ed.)We examine the uneven social and spatial distributions of COVID-19 and their relationships with indicators of social vulnerability in the U.S. epicenter, New York City (NYC). As of July 17th, 2020, NYC, despite having only 2.5% of the U.S. population, has [Formula: see text]6% of all confirmed cases, and [Formula: see text]16% of all deaths, making it a key learning ground for the social dynamics of the disease. Our analysis focuses on the multiple potential social, economic, and demographic drivers of disproportionate impacts in COVID-19 cases and deaths, as well as population rates of testing. Findings show that immediate impacts of COVID-19 largely fall along lines of race and class. Indicators of poverty, race, disability, language isolation, rent burden, unemployment, lack of health insurance, and housing crowding all significantly drive spatial patterns in prevalence of COVID-19 testing, confirmed cases, death rates, and severity. Income in particular has a consistent negative relationship with rates of death and disease severity. The largest differences in social vulnerability indicators are also driven by populations of people of color, poverty, housing crowding, and rates of disability. Results highlight the need for targeted responses to address injustice of COVID-19 cases and deaths, importance of recovery strategies that account for differential vulnerability, and provide an analytical approach for advancing research to examine potential similar injustice of COVID-19 in other U.S. cities. Significance Statement Communities around the world have variable success in mitigating the social impacts of COVID-19, with many urban areas being hit particularly hard. Analysis of social vulnerability to COVID-19 in the NYC, the U.S. national epicenter, shows strongly disproportionate impacts of the pandemic on low income populations and communities of color. Results highlight the class and racial inequities of the coronavirus pandemic in NYC, and the need to unpack the drivers of social vulnerability. To that aim, we provide a replicable framework for examining patterns of uneven social vulnerability to COVID-19- using publicly available data which can be readily applied in other study regions, especially within the U.S.A. This study is important to inform public and policy debate over strategies for short- and long-term responses that address the injustice of disproportionate impacts of COVID-19. Although similar studies examining social vulnerability and equity dimensions of the COVID-19 outbreak in cities across the U.S. have been conducted (Cordes and Castro 2020, Kim and Bostwick 2002, Gaynor and Wilson 2020; Wang et al. 2020; Choi and Unwin 2020), this study provides a more comprehensive analysis in NYC that extends previous contributions to use the highest resolution spatial units for data aggregation (ZCTAs). We also include mortality and severity rates as key indicators and provide a replicable framework that draws from the Centers for Disease Control and Prevention’s Social Vulnerability indicators for communities in NYC.more » « less
-
null (Ed.)Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response.more » « less
-
COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of COVID-19, with close to two million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments. A number of factors influences public perception, including an individual’s belief system, prior knowledge about a disease and information about a disease. In this article, we develop a model for COVID-19 using a system of ordinary differential equations following the natural history of the infection. The model uniquely incorporates social behavioral aspects such as quarantine and quarantine violation. The model is further driven by people’s sentiments (positive and negative) which accounts for the influence of disinformation. People’s sentiments were obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a social media platform across six countries. Our results show that our model incorporating public sentiments is able to capture the trend in the trajectory of the epidemic curve of the reported cases. Furthermore, our results show that positive public sentiments reduce disease burden in the community. Our results also show that quarantine violation and early discharge of the infected population amplifies the disease burden on the community. Hence, it is important to account for public sentiment and individual social behavior in epidemic models developed to study diseases like COVID-19.more » « less
An official website of the United States government

