skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plant Genetics as a Tool for Manipulating Crop Microbiomes: Opportunities and Challenges
Growing human population size and the ongoing climate crisis create an urgent need for new tools for sustainable agriculture. Because microbiomes have profound effects on host health, interest in methods of manipulating agricultural microbiomes is growing rapidly. Currently, the most common method of microbiome manipulation is inoculation of beneficial organisms or engineered communities; however, these methods have been met with limited success due to the difficulty of establishment in complex farm environments. Here we propose genetic manipulation of the host plant as another avenue through which microbiomes could be manipulated. We discuss how domestication and modern breeding have shaped crop microbiomes, as well as the potential for improving plant-microbiome interactions through conventional breeding or genetic engineering. We summarize the current state of knowledge on host genetic control of plant microbiomes, as well as the key challenges that remain.  more » « less
Award ID(s):
2033621 1656006
PAR ID:
10317345
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Bioengineering and Biotechnology
Volume:
9
ISSN:
2296-4185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Breeders and evolutionary geneticists have grappled with the complexity of the ‘genotype‐to‐phenotype map’ for decades. Now, recent studies highlight the relevance of this concept for understanding heritability of plant microbiomes. Because host phenotype is a more proximate cause of microbiome variation than host genotype, microbiome heritability varies across plant anatomy and development. Fine‐scale variation of plant traits within organs suggests that the well‐established concept of ‘microbiome compartment’ should be refined. Additionally, recent work shows that the balance of deterministic processes (including host genetic effects) vs stochastic processes also varies over time and space. Together, these findings suggest that re‐centering plant phenotype – both as a predictor and a readout of microbiome function – will accelerate new insights into microbiome heritability. 
    more » « less
  2. To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities. 
    more » « less
  3. Bulgarelli, Davide (Ed.)
    ABSTRACT The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana . We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana , we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth. 
    more » « less
  4. Shade, Ashley (Ed.)
    ABSTRACT We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass Brachypodium distachyon grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. IMPORTANCE We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. Salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection. 
    more » « less
  5. Abstract Hybridization between organisms from evolutionarily distinct lineages can have profound consequences on organismal ecology, with cascading effects on fitness and evolution. Most studies of hybrid organisms have focused on organismal traits, for example, various aspects of morphology and physiology. However, with the recent emergence of holobiont theory, there has been growing interest in understanding how hybridization impacts and is impacted by host‐associated microbiomes. Better understanding of the interplay between host hybridization and host‐associated microbiomes has the potential to provide insight into both the roles of host‐associated microbiomes as dictators of host performance as well as the fundamental rules governing host‐associated microbiome assembly. Unfortunately, there is a current lack of frameworks for understanding the structure of host‐associated microbiomes of hybrid organisms.In this paper, we develop four conceptual models describing possible relationships between the host‐associated microbiomes of hybrids and their progenitor or ‘parent’ taxa. We then integrate these models into a quantitative ‘4H index’ and present a new R package for calculation, visualization and analysis of this index.We demonstrate how the 4H index can be used to compare hybrid microbiomes across disparate plant and animal systems. Our analyses of these data sets show variation in the 4H index across systems based on host taxonomy, host site and microbial taxonomic group.Our four conceptual models, paired with our 4H index and associated visualization tools, facilitate comparison across hybrid systems. This, in turn, allows for systematic exploration of how different aspects of host hybridization impact the host‐associated microbiomes of hybrid organisms. 
    more » « less