The cycling of marine particulate matter is critical for sequestering carbon in the deep ocean and in marine sediments. Biogenic minerals such as calcium carbonate (CaCO3) and opal add density to more buoyant organic material, facilitating particle sinking and export. Here, we compile and analyze a global data set of particulate organic carbon (POC), particulate inorganic carbon (PIC, or CaCO3), and biogenic silica (bSi, or opal) concentrations collected using large volume pumps (LVPs). We analyze the distribution of all three biogenic phases in the small (1–53 μm) and large (>53 μm) size classes. Over the entire water column 76% of POC exists in the small size fraction. Similarly, the small size class contains 82% of PIC, indicating the importance of small‐sized coccolithophores to the PIC budget of the ocean. In contrast, 50% of bSi exists in the large size fraction, reflecting the larger size of diatoms and radiolarians compared with coccolithophores. We use PIC:POC and bSi:POC ratios in the upper ocean to document a consistent signal of shallow mineral dissolution, likely linked to biologically mediated processes. Sediment trap PIC:POC and bSi:POC are elevated with respect to LVP samples and increase strongly with depth, indicating the concentration of mineral phases and/or a deficit of POC in large sinking particles. We suggest that future sampling campaigns pair LVPs with sediment traps to capture the full particulate field, especially the large aggregates that contribute to mineral‐rich deep ocean fluxes, and may be missed by LVPs.
- Award ID(s):
- 1755125
- NSF-PAR ID:
- 10317403
- Editor(s):
- Choi, Man Sik
- Date Published:
- Journal Name:
- Bada Online
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 2671-8820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Lithogenic sediment input to the Cariaco Basin on the eastern Venezuelan shelf is controlled by small mountainous rivers (SMRs). The Cariaco Basin is also an area of high phytoplankton productivity as a result of strong Trade Wind‐driven coastal upwelling. Characterizing the sources that supply particulate organic carbon (POC) to the deep Cariaco Basin is important for interpreting the paleoclimate record stored in its sediments. We measured suspended POC in the four main rivers draining into the Caraiaco Basin, the Tuy, Unare, Neveri, and Manzanares, between September 2008 and September 2009 and conducted basin‐wide oceanographic cruises in September 2008 (rainy season) and March 2009 (upwelling season). Riverine concentrations of dissolved organic carbon (DOC) and POC in the four rivers were comparable to observations made in similar tropical SMR systems (POC was between 0.3–2 mg C l−1; DOC was between 100–300 μM). Within the basin, the geochemical composition of surface particles and bottom nepheloid layers (BNLs) changed with season. During the rainy season, the isotopic composition of both surface particles and BNL was characteristic of continentally derived material (δ13Corg, approximately −30 to −26‰), while during upwelling, the composition shifted to values more typical of marine sources (δ13Corg, approximately −24 to −20‰). SMRs represent an important component of the global carbon budget, which are often overlooked in ocean carbon budgets and also in paleoclimate studies of coastal environments.
-
Particle cycling rates in marine systems are difficult to measure directly, but of great interest in understanding how carbon and other elements are distributed throughout the ocean. Here, rates of particle production, aggregation, disaggregation, sinking, remineralization, and transport mediated by zooplankton diel vertical migration were estimated from size-fractionated measurements of particulate organic carbon (POC) concentration collected during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) cruise at Station P in summer 2018. POC data were combined with a particle cycling model using an inverse method. Our estimates of the total POC settling flux throughout the water column are consistent with those derived from thorium-234 disequilibrium and sediment traps. A budget for POC in two size fractions, small (1–51 µm) and large (> 51 µm), was produced for both the euphotic zone (0–100 m) and the upper mesopelagic zone (100–500 m). We estimated that POC export at the base of the euphotic zone was 2.2 ± 0.8 mmol m−2 d−1, and that both small and large particles contributed considerably to the total export flux along the water column. The model results indicated that throughout the upper 500 m, remineralization leads to a larger loss of small POC than does aggregation, whereas disaggregation results in a larger loss of large POC than does remineralization. Of the processes explicitly represented in the model, zooplankton diel vertical migration is a larger source of large POC to the upper mesopelagic zone than the convergence of large POC due to particle sinking. Positive model residuals reveal an even larger unidentified source of large POC in the upper mesopelagic zone. Overall, our posterior estimates of particle cycling rate constants do not deviate much from values reported in the literature, i.e., size-fractionated POC concentration data collected at Station P are largely consistent with prior estimates given their uncertainties. Our budget estimates should provide a useful framework for the interpretation of process-specific observations obtained by various research groups in EXPORTS. Applying our inverse method to other systems could provide insight into how different biogeochemical processes affect the cycling of POC in the upper water column.more » « less
-
Abstract To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well‐observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (<100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
-
Abstract The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on‐going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back‐arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C‐POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.