skip to main content


Title: In situ cosmogenic <sup>10</sup>Be–<sup>14</sup>C–<sup>26</sup>Al measurements from recently deglaciated bedrock as a new tool to decipher changes in Greenland Ice Sheet size
Abstract. Sometime during the middle to late Holocene (8.2 ka to ∼ 1850–1900 CE), the Greenland Ice Sheet (GrIS) was smaller than its currentconfiguration. Determining the exact dimensions of the Holocene ice-sheetminimum and the duration that the ice margin rested inboard of its currentposition remains challenging. Contemporary retreat of the GrIS from itshistorical maximum extent in southwestern Greenland is exposing a landscapethat holds clues regarding the configuration and timing of past ice-sheetminima. To quantify the duration of the time the GrIS margin was near itsmodern extent we develop a new technique for Greenland that utilizes in situcosmogenic 10Be–14C–26Al in bedrock samples that have becomeice-free only in the last few decades due to the retreating ice-sheet margin atKangiata Nunaata Sermia (n=12 sites, 36 measurements; KNS), southwest Greenland. To maximizethe utility of this approach, we refine the deglaciation history of the regionwith stand-alone 10Be measurements (n=49) and traditional 14C agesfrom sedimentary deposits contained in proglacial–threshold lakes. We combineour reconstructed ice-margin history in the KNS region with additionalgeologic records from southwestern Greenland and recent model simulations ofGrIS change to constrain the timing of the GrIS minimum in southwestGreenland and the magnitude of Holocene inland GrIS retreat, as well as to explore theregional climate history influencing Holocene ice-sheet behavior. Our10Be–14C–26Al measurements reveal that (1) KNS retreated behindits modern margin just before 10 ka, but it likely stabilized near thepresent GrIS margin for several thousand years before retreating fartherinland, and (2) pre-Holocene 10Be detected in several of our sample sitesis most easily explained by several thousand years of surface exposure duringthe last interglaciation. Moreover, our new results indicate that the minimumextent of the GrIS likely occurred after ∼5 ka, and the GrISmargin may have approached its eventual historical maximum extent as early as∼2 ka. Recent simulations of GrIS change are able to match thegeologic record of ice-sheet change in regions dominated by surface massbalance, but they produce a poorer model–data fit in areas influenced by oceanicand dynamic processes. Simulations that achieve the best model–data fitsuggest that inland retreat of the ice margin driven by early to middleHolocene warmth may have been mitigated by increased precipitation. Triple10Be–14C–26Al measurements in recently deglaciated bedrockprovide a new tool to help decipher the duration of smaller-than-present iceover multiple timescales. Modern retreat of the GrIS margin in southwestGreenland is revealing a bedrock landscape that was also exposed during themigration of the GrIS margin towards its Holocene minimum extent, but it has yetto tap into a landscape that remained ice-covered throughout the entireHolocene.  more » « less
Award ID(s):
1755125
NSF-PAR ID:
10317489
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate of the Past
Volume:
17
Issue:
1
ISSN:
1814-9332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The North Atlantic was a key locus for circulation-driven abrupt climate change in the past and could play a similar role in the future. Abrupt cold reversals, including the 8.2 ka event, punctuated the otherwise warm early Holocene in the North Atlantic region and serve as useful paleo examples of rapid climate change. In this work, we assess the cryospheric response to early Holocene climate history on Baffin Island, Arctic Canada, using cosmogenic radionuclide dating of moraines. We present 39 new 10Be ages from four sets of multi-crested early Holocene moraines deposited by cirque glaciers and ice cap outlet glaciers, as well as erratic boulders along adjacent fiords to constrain the timing of regional deglaciation. The age of one moraine is additionally constrained by in situ 14C measurements, which confirm 10Be inheritance in some samples. All four moraines were deposited between ~9.2 and 8.0 ka, and their average ages coincide with abrupt coolings at 9.3 and 8.2 ka that are recorded in Greenland ice cores. Freshwater delivery to the North Atlantic that reduced the flux of warm Atlantic water into Baffin Bay may explain brief intervals of glacier advance, although moraine formation cannot be definitively tied to centennial-scale cold reversals. We thus explore other possible contributing factors, including ice dynamics related to retreat of Laurentide Ice Sheet outlet glaciers. Using a numerical glacier model, we show that the debuttressing effect of trunk valley deglaciation may have contributed to these morainebuilding events. These new age constraints and process insights highlight the complex behavior of the cryosphere during regional deglaciation and suggest that multiple abrupt cold reversalsdas well as deglacial ice dynamicsdlikely played a role in early Holocene moraine formation on Baffin Island. 
    more » « less
  2. Abstract. Numerical simulations of the Greenland Ice Sheet (GrIS) over geologictimescales can greatly improve our knowledge of the critical factors drivingGrIS demise during climatically warm periods, which has clear relevance forbetter predicting GrIS behavior over the upcoming centuries. To assess thefidelity of these modeling efforts, however, observational constraints ofpast ice sheet change are needed. Across southwestern Greenland, geologicrecords detail Holocene ice retreat across both terrestrial-based and marine-terminating environments, providing an ideal opportunity to rigorouslybenchmark model simulations against geologic reconstructions of ice sheetchange. Here, we present regional ice sheet modeling results using theIce-sheet and Sea-level System Model (ISSM) of Holocene ice sheet historyacross an extensive fjord region in southwestern Greenland covering thelandscape around the Kangiata Nunaata Sermia (KNS) glacier and extendingoutward along the 200 km Nuup Kangerula (Godthåbsfjord). Oursimulations, forced by reconstructions of Holocene climate and recentlyimplemented calving laws, assess the sensitivity of ice retreat across theKNS region to atmospheric and oceanic forcing. Our simulations reveal thatthe geologically reconstructed ice retreat across the terrestrial landscapein the study area was likely driven by fluctuations in surface mass balancein response to Early Holocene warming – and was likely not influencedsignificantly by the response of adjacent outlet glaciers to calving andocean-induced melting. The impact of ice calving within fjords, however,plays a significant role by enhancing ice discharge at the terminus, leadingto interior thinning up to the ice divide that is consistent withreconstructed magnitudes of Early Holocene ice thinning. Our results,benchmarked against geologic constraints of past ice-margin change, suggestthat while calving did not strongly influence Holocene ice-margin migrationacross terrestrial portions of the KNS forefield, it strongly impactedregional mass loss. While these results imply that the implementation andresolution of ice calving in paleo-ice-flow models is important towardsmaking more robust estimations of past ice mass change, they also illustratethe importance these processes have on contemporary and future long-term icemass change across similar fjord-dominated regions of the GrIS. 
    more » « less
  3. Richard B. Waitt ; Glenn D. Thackray ; Alan R. Gillespie (Ed.)
    The northward retreat history of the Laurentide ice sheet through the lowlands of the northeastern United States during the last deglaciation is well constrained, but its vertical thinning history is less well known because of the lack of direct constraints on ice thickness through time and space. In addition, the highest elevations in New England are characterized by gently sloping upland surfaces and weathered block fields, features with an uncertain history. To better constrain ice-sheet history in this area and its relationship to alpine geomorphology, we present 20 new 10Be and seven in situ 14C cosmogenic nuclide measurements along an elevation transect at Mount Washington, New Hampshire, the highest mountain in the northeastern United States (1917 m above sea level [a.s.l.]). Our results suggest substantially different exposure and erosion histories on the upper and lower parts of the mountain. Above 1600 m a.s.l., 10Be and in situ 14C measurements are consistent with upper reaches of the mountain deglaciating by 18 ka. However, some 10Be ages are up to several times greater than the age of the last deglaciation, consistent with weakly erosive, cold-based ice that did not deeply erode preglacial surfaces. Below 1600 m a.s.l., 10Be ages are indistinguishable over a nearly 900 m range in elevation and imply rapid ice-surface lowering ca. 14.1 ± 1.1 ka (1 standard deviation; n = 9). This shift from slow thinning early in the deglaciation on the upper part of the mountain to abrupt thinning across the lower elevations coincided with accelerated ice-margin retreat through the region recorded by Connecticut River valley varve records during the Bølling interstadial. The Mount Washington cosmogenic nuclide vertical transect and the Connecticut River valley varve record, along with other New England cosmogenic nuclide records, suggest rapid ice-volume loss in the interior northeastern United States in response to Bølling warming. 
    more » « less
  4. Abstract. The timing of the Laurentide Ice Sheet's final retreat from North America's Laurentian Great Lakes is relevant to understanding regional meltwater routing, changing proglacial lake levels, and lake-bottom stratigraphy following the Last Glacial Maximum. Recessional moraines on Isle Royale, the largest island in Lake Superior, have been mapped but not directly dated. Here, we use the mean of 10 new 10Be exposure ages of glacial erratics from two recessional moraines (10.1 ± 1.1 ka, one standard deviation; excluding one anomalously young sample) to constrain the timing of Isle Royale's final deglaciation. This 10Be age is consistent with existing minimum-limiting 14C ages of basal organic sediment from two inland lakes on Isle Royale, a sediment core in Lake Superior southwest of the island, and an estimated deglaciation age of the younger of two subaqueous moraines between Isle Royale and Michigan's Keweenaw Peninsula. Relationships between Isle Royale's landform ages and Lake Superior bottom stratigraphy allow us to delineate the retreat of the Laurentide ice margin across and through Lake Superior in the early Holocene. We suggest that Laurentide ice was in contact with the southern shorelines of Lake Superior later than previously thought.

     
    more » « less
  5. Abstract The geometry and thermal structure of western Greenland ice sheet are known to have undergone relatively substantial change over the Holocene. Evolution of the frozen and melted fractions of the bed associated with the ice-sheet retreat over this time frame remains unclear. We address this question using a thermo-mechanically coupled flowline model to simulate a 11 ka period of ice-sheet retreat in west central Greenland. Results indicate an episode of ~100 km of terminus retreat corresponded to ~16 km of upstream frozen/melted basal boundary migration. The majority of migration of the frozen area is associated with the enhancement of the frictional and strain heating fields, which are accentuated toward the retreating ice margin. The thermally active bedrock layer acts as a heat sink, tending to slow contraction of frozen-bed conditions. Since the bedrock heat flux in our region is relatively low compared to other regions of the ice sheet, the frozen region is relatively greater and therefore more susceptible to marginward changes in the frictional and strain heating fields. Migration of melted regions thus depends on both geometric changes and the antecedent thermal state of the bedrock and ice, both of which vary considerably around the ice sheet. 
    more » « less