skip to main content


Title: Simulating the Holocene deglaciation across a marine-terminating portion of southwestern Greenland in response to marine and atmospheric forcings
Abstract. Numerical simulations of the Greenland Ice Sheet (GrIS) over geologictimescales can greatly improve our knowledge of the critical factors drivingGrIS demise during climatically warm periods, which has clear relevance forbetter predicting GrIS behavior over the upcoming centuries. To assess thefidelity of these modeling efforts, however, observational constraints ofpast ice sheet change are needed. Across southwestern Greenland, geologicrecords detail Holocene ice retreat across both terrestrial-based and marine-terminating environments, providing an ideal opportunity to rigorouslybenchmark model simulations against geologic reconstructions of ice sheetchange. Here, we present regional ice sheet modeling results using theIce-sheet and Sea-level System Model (ISSM) of Holocene ice sheet historyacross an extensive fjord region in southwestern Greenland covering thelandscape around the Kangiata Nunaata Sermia (KNS) glacier and extendingoutward along the 200 km Nuup Kangerula (Godthåbsfjord). Oursimulations, forced by reconstructions of Holocene climate and recentlyimplemented calving laws, assess the sensitivity of ice retreat across theKNS region to atmospheric and oceanic forcing. Our simulations reveal thatthe geologically reconstructed ice retreat across the terrestrial landscapein the study area was likely driven by fluctuations in surface mass balancein response to Early Holocene warming – and was likely not influencedsignificantly by the response of adjacent outlet glaciers to calving andocean-induced melting. The impact of ice calving within fjords, however,plays a significant role by enhancing ice discharge at the terminus, leadingto interior thinning up to the ice divide that is consistent withreconstructed magnitudes of Early Holocene ice thinning. Our results,benchmarked against geologic constraints of past ice-margin change, suggestthat while calving did not strongly influence Holocene ice-margin migrationacross terrestrial portions of the KNS forefield, it strongly impactedregional mass loss. While these results imply that the implementation andresolution of ice calving in paleo-ice-flow models is important towardsmaking more robust estimations of past ice mass change, they also illustratethe importance these processes have on contemporary and future long-term icemass change across similar fjord-dominated regions of the GrIS.  more » « less
Award ID(s):
2105960 2105908
NSF-PAR ID:
10335762
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
16
Issue:
6
ISSN:
1994-0424
Page Range / eLocation ID:
2355 to 2372
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Sometime during the middle to late Holocene (8.2 ka to ∼ 1850–1900 CE), the Greenland Ice Sheet (GrIS) was smaller than its currentconfiguration. Determining the exact dimensions of the Holocene ice-sheetminimum and the duration that the ice margin rested inboard of its currentposition remains challenging. Contemporary retreat of the GrIS from itshistorical maximum extent in southwestern Greenland is exposing a landscapethat holds clues regarding the configuration and timing of past ice-sheetminima. To quantify the duration of the time the GrIS margin was near itsmodern extent we develop a new technique for Greenland that utilizes in situcosmogenic 10Be–14C–26Al in bedrock samples that have becomeice-free only in the last few decades due to the retreating ice-sheet margin atKangiata Nunaata Sermia (n=12 sites, 36 measurements; KNS), southwest Greenland. To maximizethe utility of this approach, we refine the deglaciation history of the regionwith stand-alone 10Be measurements (n=49) and traditional 14C agesfrom sedimentary deposits contained in proglacial–threshold lakes. We combineour reconstructed ice-margin history in the KNS region with additionalgeologic records from southwestern Greenland and recent model simulations ofGrIS change to constrain the timing of the GrIS minimum in southwestGreenland and the magnitude of Holocene inland GrIS retreat, as well as to explore theregional climate history influencing Holocene ice-sheet behavior. Our10Be–14C–26Al measurements reveal that (1) KNS retreated behindits modern margin just before 10 ka, but it likely stabilized near thepresent GrIS margin for several thousand years before retreating fartherinland, and (2) pre-Holocene 10Be detected in several of our sample sitesis most easily explained by several thousand years of surface exposure duringthe last interglaciation. Moreover, our new results indicate that the minimumextent of the GrIS likely occurred after ∼5 ka, and the GrISmargin may have approached its eventual historical maximum extent as early as∼2 ka. Recent simulations of GrIS change are able to match thegeologic record of ice-sheet change in regions dominated by surface massbalance, but they produce a poorer model–data fit in areas influenced by oceanicand dynamic processes. Simulations that achieve the best model–data fitsuggest that inland retreat of the ice margin driven by early to middleHolocene warmth may have been mitigated by increased precipitation. Triple10Be–14C–26Al measurements in recently deglaciated bedrockprovide a new tool to help decipher the duration of smaller-than-present iceover multiple timescales. Modern retreat of the GrIS margin in southwestGreenland is revealing a bedrock landscape that was also exposed during themigration of the GrIS margin towards its Holocene minimum extent, but it has yetto tap into a landscape that remained ice-covered throughout the entireHolocene. 
    more » « less
  2. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less
  3. Abstract. The northern sector of the Greenland Ice Sheet is considered to beparticularly susceptible to ice mass loss arising from increased glacierdischarge in the coming decades. However, the past extent and dynamics ofoutlet glaciers in this region, and hence their vulnerability to climatechange, are poorly documented. In the summer of 2019, the Swedish icebreakerOden entered the previously unchartered waters of Sherard Osborn Fjord, whereRyder Glacier drains approximately 2 % of Greenland's ice sheet into theLincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier andits ice tongue by combining radiocarbon dating with sedimentary faciesanalyses along a 45 km transect of marine sediment cores collected betweenthe modern ice tongue margin and the mouth of the fjord. The resultsillustrate that Ryder Glacier retreated from a grounded position at thefjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by theMiddle Holocene (6.3±0.3 ka cal BP), likely becoming completelyland-based. A re-advance of Ryder Glacier occurred in the Late Holocene,becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue,similar in extent to its current position was established in the LateHolocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) andextended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited duringthe entire retreat and regrowth phases, suggesting the persistence of an icetongue that only collapsed when the glacier retreated behind a prominenttopographic high at the landward end of the fjord. Sherard Osborn Fjordnarrows inland, is constrained by steep-sided cliffs, contains a number ofbathymetric pinning points that also shield the modern ice tongue andgrounding zone from warm Atlantic waters, and has a shallowing inlandsub-ice topography. These features are conducive to glacier stability andcan explain the persistence of Ryder's ice tongue while the glacier remainedmarine-based. However, the physiography of the fjord did not halt thedramatic retreat of Ryder Glacier under the relatively mild changes inclimate forcing during the Holocene. Presently, Ryder Glacier is groundedmore than 40 km seaward of its inferred position during the Middle Holocene,highlighting the potential for substantial retreat in response to ongoingclimate change. 
    more » « less
  4. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently retreating due to shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss of the WAIS. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in marine-based ice sheet extent during the late Neogene and Quaternary. Numerical models indicate a fundamental role for oceanic heat in controlling this variability over at least the past 20 My. Although evidence for past ice sheet variability has been collected in marginal settings, sedimentologic sequences from the outer continental shelf are required to evaluate the extent of past ice sheet variability and the associated oceanic forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five drill sites from the outer continental shelf to rise in the eastern Ross Sea to resolve the relationship between climatic and oceanic change and WAIS evolution through the Neogene and Quaternary. This location was selected because numerical ice sheet models indicate that this sector of Antarctica is highly sensitive to changes in ocean heat flux. The expedition was designed for optimal data-model integration and will enable an improved understanding of the sensitivity of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the late early to middle Miocene). The principal goals of Expedition 374 were to • Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; • Reconstruct ice-proximal atmospheric and oceanic temperatures to identify past polar amplification and assess its forcings and feedbacks; • Assess the role of oceanic forcing (e.g., sea level and temperature) on AIS stability/instability; • Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and • Reconstruct eastern Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet stability/instability, and global climate. To achieve these objectives, we will • Use data and models to reconcile intervals of maximum Neogene and Quaternary Antarctic ice advance with far-field records of eustatic sea level change; • Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; • Reconstruct Neogene and Quaternary sea ice margin fluctuations in datable marine continental slope and rise records and correlate these records to existing inner continental shelf records; • Examine relationships among WAIS stability/instability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and • Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 was carried out from January to March 2018, departing from Lyttelton, New Zealand. We recovered 1292.70 m of high-quality cores from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite, mudstone, and diatomite, penetrating the Ross Sea seismic Unconformity RSU4. The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the early and middle Miocene. At Site U1522, we cored a discontinuous upper Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf, with the primary objective to penetrate and date seismic Unconformity RSU3, which is interpreted to represent the first major continental shelf–wide expansion and coalescing of marine-based ice streams from both East and West Antarctica. At Site U1523, we cored a sediment drift located beneath the westerly flowing Antarctic Slope Current (ASC). Cores from this site will provide a record of the changing vigor of the ASC through time. Such a reconstruction will enable testing of the hypothesis that changes in the vigor of the ASC represent a key control on regulating heat flux onto the continental shelf, resulting in the ASC playing a fundamental role in ice sheet mass balance. We also cored two sites on the continental slope and rise. At Site U1524, we cored a Plio–Pleistocene sedimentary sequence on the continental rise on the levee of the Hillary Canyon, which is one of the largest conduits of Antarctic Bottom Water delivery from the Antarctic continental shelf into the abyssal ocean. Drilling at Site U1524 was intended to penetrate into middle Miocene and older strata but was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (U1525) to core a single hole with a record complementary to the upper part of the section recovered at Site U1524. We returned to Site U1524 3 days later, after the sea ice cleared. We then cored Hole U1524C with the rotary core barrel with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF due to a mechanical failure with the vessel that resulted in termination of all drilling operations and a return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives as originally planned. In particular, we were not able to obtain the deeper time record of the middle Miocene on the continental rise or abyssal sequences that would have provided a continuous and contemporaneous archive to the high-quality (but discontinuous) record from Site U1521 on the continental shelf. The mechanical failure also meant we could not recover sediment cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a shelf-to-rise transect for the Miocene, a continental shelf-to-rise transect for the Pliocene to Pleistocene interval is possible through comparison of the high-quality records from Site U1522 with those from Site U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL). 
    more » « less
  5. Elucidating the geologic history of the Greenland Ice Sheet (GrIS) is essential for understanding glacial instability thresholds, identified as major climate system tipping points, and how the cryosphere will respond to anthropogenic greenhouse gas emissions. To address current knowledge gaps in the evolution and variability of the GrIS and its role in Earth's climate system, International Ocean Discovery Program (IODP) Expedition 400 obtained sedimentary records from Sites U1603–U1608 across the northwest Greenland margin into Baffin Bay where thick Cenozoic sedimentary successions can be directly linked to the evolution of the northern GrIS (NGrIS). The strategy of drilling along this transect was to retrieve a composite stratigraphic succession representing the late Cenozoic era from the Oligocene/early Miocene to Holocene. The proposed sites targeted high–accumulation rate deposits associated with contourite drifts and potential interglacial deposits within a trough mouth fan system densely covered by seismic data. The principal objectives were to (1) test if the NGrIS underwent near-complete deglaciations in the Pleistocene and assess the ice sheet’s response to changes in orbital cyclicities through the mid-Pleistocene transition; (2) ascertain the timing of the NGrIS expansion and examine a hypothesized linkage between marine heat transport through Baffin Bay and high Arctic warmth during the Pliocene; and (3) provide new understandings of climate-ecosystem conditions in Greenland during the geologic periods with increased atmospheric CO2 compared to preindustrial values, encompassing the last 30 My. The deep time objective was attained by coring at Site U1607 on the inner shelf to 978 meters below seafloor, capturing a succession of mainly Miocene and Oligocene age. The six sites drilled during Expedition 400 resulted in 2299 m of recovered core material, and wireline downhole logging was completed at Sites U1603, U1604, U1607, and U1608. This unique archive will provide the basis for understanding the full range of forcings and feedbacks—oceanic, atmospheric, orbital, and tectonic—that influence the GrIS over a range of timescales, as well as conditions prevailing at the time of glacial inception and deglacial to interglacial periods. We anticipate that the shipboard data and further analytical work on Expedition 400 material can constrain predictive models addressing the GrIS response to global warming and its impending effects on global sea levels. 
    more » « less