skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fungal infection, decline and persistence in the only obligate troglodytic Neotropical salamander
The fungal pathogen Batrachochytrium dendrobatidis ( Bd ) is implicated in global mass die-offs and declines in amphibians. In Mesoamerica, the Bd epidemic wave hypothesis is supported by detection of Bd in historic museum specimens collected over the last century, yet the timing and impact of the early stages of the wave remain poorly understood. Chiropterotriton magnipes , the only obligate troglodytic Neotropical salamander, was abundant in its small range in the decade following its description in 1965, but subsequently disappeared from known localities and was not seen for 34 years. Its decline is roughly coincident with that of other populations of Neotropical salamanders associated with the invasion and spread of Bd . To determine the presence and infection intensity of Bd on C. magnipes and sympatric amphibian species (which are also Bd hosts), we used a noninvasive sampling technique and qPCR assay to detect Bd on museum specimens of C. magnipes collected from 1952 to 2012, and from extant populations of C. magnipes and sympatric species of amphibians. We also tested for the presence of the recently discovered Batrachochytrium salamandivorans ( Bsal ), another fungal chytridiomycete pathogen of salamanders, using a similar technique specific for Bsal . We did not detect Bd in populations of C. magnipes before 1969, while Bd was detected at low to moderate prevalence just prior to and during declines. This pattern is consistent with Bd -caused epizootics followed by host declines and extirpations described in other hosts. We did not detect Bsal in any extant population of C. magnipes . We obtained one of the earliest positive records of the fungus to date in Latin America, providing additional historical evidence consistent with the Bd epidemic wave hypothesis. Genotyping results show that at least one population is currently infected with the Global Panzootic Lineage of Bd , but our genotyping of the historical positive samples was unsuccessful. The lack of large samples from some years and the difficulty in genotyping historical Bd samples illustrate some of the difficulties inherent in assigning causality to historical amphibian declines. These data also provide an important historical baseline for actions to preserve the few known remaining populations of C. magnipes .  more » « less
Award ID(s):
1633948
PAR ID:
10317578
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
8
ISSN:
2167-8359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Emerging infectious diseases have been of particular interest as a major threat to global biodiversity. In amphibians, two fungal sister taxa, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), along with the viral pathogen ranavirus, have affected global populations. Factors such as host traits, abiotic and biotic environmental conditions, and pathogen prevalence contribute to species-specific disease susceptibility. The eastern United States is home to the Appalachian Mountain system, known as a “hotspot” for salamander biodiversity. Bd and ranavirus are present throughout the Appalachians, and a Bsal emergence could be imminent. Throughout the Appalachians are the spotted salamanders, Ambystoma maculatum, a mostly terrestrial salamander that participates in mass breeding migration to ponds and vernal pools in the late spring. Previous experimental studies have shown that spotted salamanders appear to be resistant to Bd and Bsal infection, but the mechanisms behind Bd defense remain unknown. Spotted salamanders emerging from their overwintering habitats were hypothesized to have potent anti-Bd function expressed in their mucus and in their skin microbiomes, as a countermeasure to annual Bd re-emergence. We used non-invasive sampling at two pools during the spotted salamander annual breeding event to (I) determine pathogen prevalence, (II) quantify the antifungal potential of salamander skin mucus, and (III) characterize the diversity and composition of the salamander skin microbiome and contrast it to that of the corresponding environmental microbiome. We did not detect any Bd, Bsal, or ranavirus in the salamanders. The salamander mucus did not inhibit Bd growth in vitro, and anti-Bd bacteria were at low relative abundance in the microbiome. The salamander microbiome sourced a proportion of bacteria from the environment and appeared to select rare taxa from their respective pools; however, their functional relevance in pathogen defense is unclear. Our results suggest that the spotted salamander mucosal secretions and skin microbiome are not the mechanisms of defense against Bd. Rather, elements not captured by the mucosome (e.g., immune cell gene expression) may confer resistance. This study contributes to the understanding of salamander intraspecies variation in disease susceptibility. 
    more » « less
  2. Xuan Liu (Ed.)
    Aim: Amphibian populations are threatened globally by anthropogenic change and Batrachochytrium dendrobatidis (Bd), a fungal pathogen causing chytridiomycosis disease to varying degrees of severity. A closely related new fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has recently left its supposed native range in Asia and decimated some salamander populations in Europe. Despite being noticed initially for causing chytridiomycosis-related population declines in salamanders, Bsal can also infect anurans and cause non-lethal chytridiomycosis or asymptomatic infections in salamanders. Bsal has not yet been detected in the United States, but given the United States has the highest salamander biodiversity on Earth, predictive assessments of salamander risk to Bsal infection will enable proactive allocation of research and conservation efforts into disease prevention and mitigation. Location: The United States, Europe and Asia. Methods: We first predicted the environmental suitability for the Bsal pathogen in the United States through an ecological niche model based on the pathogen's known native range in Asia, validated on the observed invasive range in Europe using bioclimatic, land cover, elevation, soil characteristics and human modification variables. Second, we predicted the susceptibility of salamander species to Bsal infection using a machine-learning model that correlated life history traits with published data on confirmed species infections. Finally, we mapped the geographic ranges of the subset of species that were predicted to be susceptible to Bsal infection. Results: In the United States, the overlap of environmental suitability and susceptible salamander species was greatest in the Pacific Northwest, near the Gulf of Mexico, and along the Atlantic coast, and in inland states east of the Plains region. Main Conclusions: The overlap of these metrics identify salamander populations that may be at risk of developing Bsal infection and suggests priorities for pre-emptive research and conservation measures to protect at-risk salamander species from an additional pathogenic threat. 
    more » « less
  3. Abstract The amphibian chytrid fungusBatrachochytrium dendrobatidis(Bd) is a cosmopolitan pathogen with numerous distinct lineages. The global panzootic lineage (Bd-GPL) is the most widespread and virulent lineage and is responsible for many recorded amphibian declines. Mapping the extent ofBd-GPL and other more established lineages is important for predicting disease dynamics in amphibian communities. Ecuador is the most biodiverse country per unit area for amphibian taxa and, thus, a priority for studies on genotypic diversity ofBd. In this study, we tested skin swab samples collected from 464 individual amphibians across coastal, Andean montane, and Amazonian forests, for the presence of twoBdlineages known to be present in South America: the globally-distributedBd-GPL and the Brazilian-endemicBd-Asia2/Brazil lineage. By using a discriminatory qPCR SNP assay, we found widespread prevalence ofBd-GPL in Ecuador in diverse host taxa. Genotyping efficiency was 36% in this study, meaning that one in every three swabs that tested positive forBdin infection assays were successfully genotyped. Through this study, we provide further support for the presence of a singleBdlineage in this neotropical biodiversity hotspot. 
    more » « less
  4. Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans ( Bsal ). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd -Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data ( Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal . Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal ( https://amphibiandisease.org ) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd- Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories. 
    more » « less
  5. Global amphibian populations are declining rapidly, due largely to infectious diseases such as chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). The Herpetology Department at the Sam Noble Museum has screened for Bd prevalence among amphibian communities across Oklahoma for over five years, providing ongoing data about the disease’s prevalence and distribution. Recently, the museum partnered with other Oklahomans through a citizen science project allowing participants to sample their local amphibian communities for Bd. Our project targeted K–12 students in Oklahoma to promote curiosity in science and to foster an interest in pursuing career paths in science, technology, engineering, and mathematics (STEM). The multi-year baseline citizen science dataset we obtained shows a lower Bd prevalence compared to samples collected from trained researchers. In this study, we juxtapose the two datasets and make observations on the feasibility of the citizen science program. Results from the program suggest that kit return rates were average for a project of this scale, and many participants could correctly identify amphibian species. Our findings indicate that the citizen science initiative is successful in increasing statewide amphibian disease sampling range and heightening the public’s awareness of this global amphibian epidemic. 
    more » « less