Abstract Cu‐containing metalloenzymes are known to catalyze oxygen activation through cooperative catalysis. In the current work, we report the design of synthetic polymer Cu catalysts using pyrene‐labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py‐PGMADPA) to coordinate multiple Cu sites along polymer chains. The catalysts feature a pyrene end group that can form supramolecular π‐π stacking with conductive carbon to allow efficient immobilization of catalysts to the graphite electrode. Cu‐containing Py‐PGMADPA was examined for electrocatalytic oxygen reduction. The hybrid catalyst showed an onset potential of 0.5 V (vs. RHE) at pH 7 and 0.79 V at pH 13. The kinetic study indicated that the catalyst had a 2e−reduction of oxygen mainly mediated by Cu+centers. We demonstrated the importance of cooperative catalysis among Cu sites which did not exist for other transition metal ions, like Mn2+, Fe2+, Co2+, and Ni2+. The confinement of polymer chains promotes the activity and stabilizes Cu catalysts even at an extremely low Cu loading. The rational design of bioinspired polymer catalysts offers an alternative way to prepare synthetic mimics of metalloenzymes.
more »
« less
Bioinspired mononuclear Mn complexes for O 2 activation and biologically relevant reactions
A general interest in harnessing the oxidizing power of dioxygen (O 2 ) continues to motivate research efforts on bioinspired and biomimetic complexes to better understand how metalloenzymes mediate these reactions. The ubiquity of Fe- and Cu-based enzymes attracts significant attention and has resulted in many noteworthy developments for abiotic systems interested in direct O 2 reduction and small molecule activation. However, despite the existence of Mn-based metalloenzymes with important O 2 -dependent activity, there has been comparatively less focus on the development of these analogues relative to Fe- and Cu-systems. In this Perspective , we summarize important contributions to the development of bioinspired mononuclear Mn complexes for O 2 activation and studies on their reactivity, emphasizing important design parameters in the primary and secondary coordination spheres and outlining mechanistic trends.
more »
« less
- PAR ID:
- 10317603
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 46
- ISSN:
- 1477-9226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Investigation of Cu–O 2 oxidation reactivity is important in biological and anthropogenic chemistry. Zeolites are one of the most promising Cu/O based oxidation catalysts for development of industrial-scale CH 4 to CH 3 OH conversion. Their oxidation mechanisms are not well understood, however, highlighting the importance of the investigation of molecular Cu( i )–O 2 reactivity with O-donor complexes. Herein, we give an overview of the synthesis, structural properties, and O 2 reactivity of three different series of O-donor fluorinated Cu( i ) alkoxides: K[Cu(OR) 2 ], [(Ph 3 P)Cu(μ-OR) 2 Cu(PPh 3 )], and K[(R 3 P)Cu(pin F )], in which OR = fluorinated monodentate alkoxide ligands and pin F = perfluoropinacolate. This breadth allowed for the exploration of the influence of the denticity of the ligand, coordination number, the presence of phosphine, and K⋯F/O interactions on their O 2 reactivity. K⋯F/O interactions were required to activate O 2 in the monodentate-ligand-only family, whereas these connections did not affect O 2 activation in the bidentate complexes, potentially due to the presence of phosphine. Both families formed trisanionic, trinuclear cores of the form {Cu 3 (μ 3 -O) 2 } 3− . Intramolecular and intermolecular substrate oxidation were also explored and found to be influenced by the fluorinated ligand. Namely, {Cu 3 (μ 3 -O) 2 } 3− from K[Cu(OR) 2 ] could perform both monooxygenase reactivity and oxidase catalysis, whereas those from K[(R 3 P)Cu(pin F )] could only perform oxidase catalysis.more » « less
-
Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn.more » « less
-
Reactions of the bicompartmental bis(phenolato) compound 6,6′-methylenebis(2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-chlorophenol)hemihydrate (H 2 L ½H 2 O) with 3d metal( ii ) ions afforded novel fully structurally characterized bridged acetato dinuclear complexes [Mn 2 (HL)(μ 1,2 -OAc) 2 ]PF 6 (1) [Zn 2 (HL)(μ 1,2 -OAc)(H 2 O) 0.75 (MeOH) 0.25 ](PF 6 ) 2 ·0.45(H 2 O) (5) and [Cd 2 (HL)(μ 1,1,2 -OAc)(OAc)(H 2 O)]PF 6 ·H 2 O (6) as well as the polymeric bridged-azido tetranuclear catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4). The complex [Cu 4 (HL) 2 (ClO 4 ) 3 (H 2 O) 5 ](ClO 4 ) 3 ·5H 2 O (2) was partially characterized. In addition, three more dinuclear complexes [Cu 2 (H 2 L)(NO 3 ) 2 (H 2 O) 2 ](NO 3 ) 2 (3), [Cu 2 (HL)(OAc)(CH 3 OH)](PF 6 ) 2 (7) and [Cu 2 (HL)(NCS) 2 ]NO 3 ·2H 2 O (8) were also isolated. All complexes were characterized by CHN elemental analysis, IR and UV-Vis spectroscopy, ESI-MS, conductivity measurements and X-ray single crystal crystallography for compounds 1, 4, 5 and 6, where the bis(phenolato) ligand displayed different deprotonation (H 2 L, HL − and L 2− ). The magnetic susceptibility measurements over the temperature range 2–300 K revealed very weak antiferromagnetic coupling in dimanganese( ii ) 1 ( J = −1.64(1) cm −1 ) and almost negligible magnetic interaction in dicopper( ii ) 2 ( J = 0(3) cm −1 ). In the azido catena -[Cu 4 (HL) 2 (μ 1,1 -N 3 ) 2 (μ 1,3 -N 3 ) 2 ](NO 3 ) 2 ·5H 2 O (4) complex, the J value of −133(3) cm −1 was obtained upon moderate-to-strong antiferromagnetic coupling through the di-μ 1,3 -N 3 -bridged dicopper( ii ) unit with no magnetic interaction between the two copper( ii ) ions in the di-μ 1,1 -N 3 -bridged unit.more » « less
-
TiO 2 supported catalysts have been widely studied for the selective catalytic reduction (SCR) of NO x ; however, comprehensive understanding of synergistic interactions in multi-component SCR catalysts is still lacking. Herein, transition metal elements (V, Cr, Mn, Fe, Co, Ni, Cu, La, and Ce) were loaded onto TiO 2 nanoarrays via ion-exchange using protonated titanate precursors. Amongst these catalysts, Mn-doped catalysts outperform the others with satisfactory NO conversion and N 2 selectivity. Cu co-doping into the Mn-based catalysts promotes their low-temperature activity by improving reducibility, enhancing surface Mn 4+ species and chemisorbed labile oxygen, and elevating the adsorption capacity of NH 3 and NO x species. While Ce co-doping with Mn prohibits the surface adsorption and formation of NH 3 and NO x derived species, it boosts the N 2 selectivity at high temperatures. By combining Cu and Ce as doping elements in the Mn-based catalysts, both the low-temperature activity and the high-temperature N 2 selectivity are enhanced, and the Langmuir–Hinshelwood reaction mechanism was proved to dominate in the trimetallic Cu–Ce–5Mn/TiO 2 catalysts due to the low energy barrier.more » « less
An official website of the United States government

