skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioinspired Design of Hybrid Polymer Catalysts with Multicopper Sites for Oxygen Reduction
Abstract Cu‐containing metalloenzymes are known to catalyze oxygen activation through cooperative catalysis. In the current work, we report the design of synthetic polymer Cu catalysts using pyrene‐labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py‐PGMADPA) to coordinate multiple Cu sites along polymer chains. The catalysts feature a pyrene end group that can form supramolecular π‐π stacking with conductive carbon to allow efficient immobilization of catalysts to the graphite electrode. Cu‐containing Py‐PGMADPA was examined for electrocatalytic oxygen reduction. The hybrid catalyst showed an onset potential of 0.5 V (vs. RHE) at pH 7 and 0.79 V at pH 13. The kinetic study indicated that the catalyst had a 2ereduction of oxygen mainly mediated by Cu+centers. We demonstrated the importance of cooperative catalysis among Cu sites which did not exist for other transition metal ions, like Mn2+, Fe2+, Co2+, and Ni2+. The confinement of polymer chains promotes the activity and stabilizes Cu catalysts even at an extremely low Cu loading. The rational design of bioinspired polymer catalysts offers an alternative way to prepare synthetic mimics of metalloenzymes.  more » « less
Award ID(s):
1705566
PAR ID:
10255751
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemCatChem
Volume:
12
Issue:
23
ISSN:
1867-3880
Format(s):
Medium: X Size: p. 5932-5937
Size(s):
p. 5932-5937
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chirality plays a significant role in the manufacture of pharmaceuticals and fine chemicals. The use of chemical catalysts to control stereoselectivity relies on the use of chiral catalysts with labor–intensive synthesis and purification. Natural enzymes offer inherent stereoselectivity, making them attractive catalysts for this purpose. We report here chiral biocatalytic oxidations in microemulsions driven by horseradish peroxidase coupled with a synthetic Cu2+‐polymer catalyst. This hybrid system features crosslinked layer–by–layer (LBL) films composed of polyions with Cu2+‐containing pyrene–labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py−PGMADPA) to drive oxygen reduction to form hydrogen peroxide. Peroxide in turn activates horseradish peroxidase (HRP) crosslinked in LbL films on magnetic particle beads to biocatalytically oxidize styrene, ethylbenzene, and methyl phenylacetate to chiral products. R‐stereoisomers of these reactants were selectively formed with a high enantiomeric excess of ≥80 % at 90 °C. The enzyme films show high thermal stability at 90 °C in cetyltrimethylammonium bromide microemulsion. Reactions at 90 °C were essentially complete in 2 hr. This hybrid approach opens a door to new designs of biocatalytic syntheses using a separate electrocatalyst for enzyme activation. 
    more » « less
  2. Cobalt sulfide nanomaterials are among the most active and stable catalysts for the electrocatalytic oxygen reduction reaction in pH 7 electrolyte. However, due to the complexity and dynamism of the catalytic surfaces in cobalt sulfide bulk materials, it is challenging to identify and tune the active site structure in order to achieve low overpotential oxygen reduction reactivity. In this work, we synthesize isolated Co sites supported on colloidal WS 2 nanosheets and develop a synthetic strategy to rationally control the first-shell coordination environment surrounding the adsorbed Co active sites. By studying Co–WS 2 materials with a range of Co–S coordination numbers, we are able to identify the optimal active site for pH 7 oxygen reduction catalysis, which comprises cobalt atoms bound to the WS 2 support with a Co–S coordination number of 3–4. The optimized Co–WS 2 material exhibits an oxygen reduction onset potential of 0.798 V vs. RHE, which is comparable to the most active bulk phases of cobalt sulfide in neutral electrolyte conditions. 
    more » « less
  3. Abstract Ionic liquids (ILs) have shown to be promising additives to the catalyst layer to enhance oxygen reduction reaction in polymer electrolyte fuel cells. However, fundamental understanding of their role in complex catalyst layers in practically relevant membrane electrode assembly environment is needed for rational design of highly durable and active platinum-based catalysts. Here we explore three imidazolium-derived ionic liquids, selected for their high proton conductivity and oxygen solubility, and incorporate them into high surface area carbon black support. Further, we establish a correlation between the physical properties and electrochemical performance of the ionic liquid-modified catalysts by providing direct evidence of ionic liquids role in altering hydrophilic/hydrophobic interactions within the catalyst layer interface. The resulting catalyst with optimized interface design achieved a high mass activity of 347 A g−1Ptat 0.9 V under H2/O2, power density of 0.909 W cm−2under H2/air and 1.5 bar, and had only 0.11 V potential decrease at 0.8 A cm−2after 30 k accelerated stress test cycles. This performance stems from substantial enhancement in Pt utilization, which is buried inside the mesopores and is now accessible due to ILs addition. 
    more » « less
  4. Oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are three critical reactions for energy-related applications, such as water electrolyzers and metal-air batteries. Graphene-supported single-atom catalysts (SACs) have been widely explored; however, either experiments or density functional theory (DFT) computations cannot screen catalysts at high speed. Herein, based on DFT computations of 104 graphene-supported SACs (M@C3, M@C4, M@pyridine-N4, and M@pyrrole-N4), we built up machine learning (ML) models to describe the underlying pattern of easily obtainable physical properties and limiting potentials (errors = 0.013/0.005/0.020 V for ORR/OER/HER, respectively), and employed these models to predict the catalysis performance of 260 other graphene-supported SACs containing metal-NxCy active sites (M@NxCy). We recomputed the top catalysts recommended by ML towards ORR/OER/HER by DFT, which confirmed the reliability of our ML model, and identified two OER catalysts (Ir@pyridine-N3C1 and Ir@pyridine-N2C2) outperforming noble metal oxides, RuO2 and IrO2. The ML models quantitatively unveiled the significance of various descriptors and fast narrowed down the potential list of graphene-supported single-atom catalysts. This approach can be easily used to screen and design other SACs, and significantly accelerate the catalyst design for many other important reactions. 
    more » « less
  5. Abstract The reduction of dioxygen to produce selectively H2O2or H2O is crucial in various fields. While platinum‐based materials excel in 4H+/4eoxygen reduction reaction (ORR) catalysis, cost and resource limitations drive the search for cost‐effective and abundant transition metal catalysts. It is thus of great importance to understand how the selectivity and efficiency of 3d‐metal ORR catalysts can be tuned. In this context, we report on a Co complex supported by a bisthiolate N2S2‐donor ligand acting as a homogeneous ORR catalyst in acetonitrile solutions both in the presence of a one‐electron reducing agent (selectivity for H2O of 93 % and TOFi=3 000 h−1) and under electrochemically‐assisted conditions (0.81 V <η<1.10 V, selectivity for H2O between 85 % and 95 %). Interestingly, such a predominant 4H+/4epathway for Co‐based ORR catalysts is rare, highlighting the key role of the thiolate donor ligand. Besides, the selectivity of this Co catalyst under chemical ORR conditions is inverse with respect to the Mn and Fe catalysts supported by the same ligand, which evidences the impact of the nature of the metal ion on the ORR selectivity. 
    more » « less