Powered knee-ankle prostheses can offer benefits over conventional passive devices during stair locomotion by providing biomimetic net-positive work and active control of joint angles. However, many modern control approaches for stair ascent and descent are often limited by time-consuming hand-tuning of user/task-specific parameters, predefined trajectories that remove user volition, or heuristic approaches that cannot be applied to both stair ascent and descent. This work presents a phase-based hybrid kinematic and impedance controller (HKIC) that allows for semi-volitional, biomimetic stair ascent and descent at a variety of step heights. We define a unified phase variable for both stair ascent and descent that utilizes lower-limb geometry to adjust to different users and step heights. We extend our prior data-driven impedance model for variable-incline walking, modifying the cost function and constraints to create a continuously-varying impedance parameter model for stair ascent and descent over a continuum of step heights. Experiments with above-knee amputee participants (N=2) validate that our HKIC controller produces biomimetic ascent and descent joint kinematics, kinetics, and work across four step height configurations. We also show improved kinematic performance with our HKIC controller in comparison to a passive microprocessor-controlled device during stair locomotion.
more »
« less
Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis
Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent.
more »
« less
- Award ID(s):
- 2024237
- PAR ID:
- 10317772
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes. This work extends the notion of NHVCs for application to variable-cadence powered prostheses. Using the segmental conjugate momentum for the prosthesis, an optimization problem is used to design a single stance-phase NHVC for three distinct walking speed trajectories (slow, normal, and fast). This stance-phase controller is implemented with a holonomic swing phase controller on a powered knee-ankle prosthesis, and experiments are conducted with an able-bodied user walking in steady and non-steady velocity conditions. The control scheme is capable of representing 1) multiple, task-dependent reference trajectories, and 2) walking gait variance due to both temporal and kinematic changes in user motion.more » « less
-
This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.more » « less
-
null (Ed.)Transfemoral amputee gait often exhibits compensations due to the lack of ankle push-off power and control over swing foot position using passive prostheses. Powered prostheses can restore this functionality, but their effects on compensatory behaviors, specifically at the residual hip, are not well understood. This paper investigates residual hip compensations through walking experiments with three transfemoral amputees using a low-impedance powered knee-ankle prosthesis compared to their day-to-day passive prosthesis. The powered prosthesis used impedance control during stance for compliant interaction with the ground, a time-based push-off controller to deliver high torque and power, and phase-based trajectory tracking during swing to provide user control over foot placement. Experiments show that when subjects utilized the powered ankle push-off, less mechanical pull-off power was required from the residual hip to progress the limb forward. Overall positive work at the residual hip was reduced for 2 of 3 subjects, and negative work was reduced for all subjects. Moreover, all subjects displayed increased step length, increased propulsive impulses on the prosthetic side, and improved impulse symmetries. Hip circumduction improved for subjects who had previously exhibited this compensation on their passive prosthesis. These improvements in gait, especially reduced residual hip power and work, have the potential to reduce fatigue and overuse injuries in persons with transfemoral amputation.more » « less
-
This paper presents the design and implementation of a novel multi-activity control strategy for a backdrivable knee-ankle exoskeleton. Traditionally, exoskeletons have used trajectory-based control of highly geared actuators for complete motion assistance. In contrast, we develop a potential energy shaping controller with ground reaction force (GRF) feedback that facilitates multi-activity assistance from a backdrivable exoskeleton without prescribing pre-defined kinematics. Although potential energy shaping was previously implemented in an exoskeleton to reduce the user’s perceived gravity, this model-based approach assumes the stance leg is fully loaded with the weight of the user, resulting in excessive control torques as weight transfers to the contralateral leg during double support. The presented approach uses GRF feedback to taper the torque control output for any activity involving multiple supports, leading to a closer match with normative joint moments in simulations based on pre-recorded human data during level walking. To implement this strategy, we present a custom foot force sensor that provides GRF feedback to the previously designed exoskeleton. Finally, results from an able-bodied human subject experiment demonstrate that the exoskeleton is able to reduce muscular activation of the primary muscles related to the knee and ankle joints during sit-to-stand, stand-to-sit, level walking, and stair climbing.more » « less