skip to main content


Title: Toward Phase-Variable Control of Sit-to-Stand Motion with a Powered Knee-Ankle Prosthesis
This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design.  more » « less
Award ID(s):
1949346 2024237
NSF-PAR ID:
10253505
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Conference on Control Technology and Applications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although the average healthy adult transitions from sit to stand over 60 times per day, most research on powered prosthesis control has only focused on walking. In this paper, we present a data-driven controller that enables sitting, standing, and walking with minimal tuning. Our controller comprises two high level modes of sit/stand and walking, and we develop heuristic biomechanical rules to control transitions. We use a phase variable based on the user's thigh angle to parameterize both walking and sit/stand motions, and use variable impedance control during ground contact and position control during swing. We extend previous work on data-driven optimization of continuous impedance parameter functions to design the sit/stand control mode using able-bodied data. Experiments with a powered knee-ankle prosthesis used by a participant with above-knee amputation demonstrate promise in clinical outcomes, as well as trade-offs between our minimal-tuning approach and accommodation of user preferences. Specifically, our controller enabled the participant to complete the sit/stand task 20% faster and reduced average asymmetry by half compared to his everyday passive prosthesis. The controller also facilitated a timed up and go test involving sitting, standing, walking, and turning, with only a mild (10%) decrease in speed compared to the everyday prosthesis. Our sit/stand/walk controller enables multiple activities of daily life with minimal tuning and mode switching. 
    more » « less
  2. Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh. We use reference kinematics from an able-bodied dataset to produce knee and ankle joint trajectories parameterized by gait phase. We redefine the gait cycle to begin at the point of maximum hip flexion instead of heel strike to improve the phase estimate. Able-bodied bypass adapter experiments demonstrate that the phase variable controller replicates normative able-bodied kinematic trajectories with a root mean squared error of 12.66 deg and 2.64 deg for the knee and ankle, respectively. The knee and ankle joints provided on average 0.387J/kg and 0.212J/kg per stride, compared to the normative averages of 0.335J/kg and 0.207J/kg, respectively. Thus, this controller allows powered knee-ankle prostheses to perform net positive mechanical work to assist stair ascent. 
    more » « less
  3. This paper presents a method to design a nonholonomic virtual constraint (NHVC) controller that produces multiple distinct stance-phase trajectories for corresponding walking speeds. NHVCs encode velocity-dependent joint trajectories via momenta conjugate to the unactuated degree(s)-of-freedom of the system. We recently introduced a method for designing NHVCs that allow for stable bipedal robotic walking across variable terrain slopes. This work extends the notion of NHVCs for application to variable-cadence powered prostheses. Using the segmental conjugate momentum for the prosthesis, an optimization problem is used to design a single stance-phase NHVC for three distinct walking speed trajectories (slow, normal, and fast). This stance-phase controller is implemented with a holonomic swing phase controller on a powered knee-ankle prosthesis, and experiments are conducted with an able-bodied user walking in steady and non-steady velocity conditions. The control scheme is capable of representing 1) multiple, task-dependent reference trajectories, and 2) walking gait variance due to both temporal and kinematic changes in user motion. 
    more » « less
  4. null (Ed.)
    For the controller of wearable lower-limb assistive devices, quantitative understanding of human locomotion serves as the basis for human motion intent recognition and joint-level motion control. Traditionally, the required gait data are obtained in gait research laboratories, utilizing marker-based optical motion capture systems. Despite the high accuracy of measurement, marker-based systems are largely limited to laboratory environments, making it nearly impossible to collect the desired gait data in real-world daily-living scenarios. To address this problem, the authors propose a novel exoskeleton-based gait data collection system, which provides the capability of conducting independent measurement of lower limb movement without the need for stationary instrumentation. The basis of the system is a lightweight exoskeleton with articulated knee and ankle joints. To minimize the interference to a wearer’s natural lower-limb movement, a unique two-degrees-of-freedom joint design is incorporated, integrating a primary degree of freedom for joint motion measurement with a passive degree of freedom to allow natural joint movement and improve the comfort of use. In addition to the joint-embedded goniometers, the exoskeleton also features multiple positions for the mounting of inertia measurement units (IMUs) as well as foot-plate-embedded force sensing resistors to measure the foot plantar pressure. All sensor signals are routed to a microcontroller for data logging and storage. To validate the exoskeleton-provided joint angle measurement, a comparison study on three healthy participants was conducted, which involves locomotion experiments in various modes, including overground walking, treadmill walking, and sit-to-stand and stand-to-sit transitions. Joint angle trajectories measured with an eight-camera motion capture system served as the benchmark for comparison. Experimental results indicate that the exoskeleton-measured joint angle trajectories closely match those obtained through the optical motion capture system in all modes of locomotion (correlation coefficients of 0.97 and 0.96 for knee and ankle measurements, respectively), clearly demonstrating the accuracy and reliability of the proposed gait measurement system. 
    more » « less
  5. This paper presents the design and implementation of a novel multi-activity control strategy for a backdrivable knee-ankle exoskeleton. Traditionally, exoskeletons have used trajectory-based control of highly geared actuators for complete motion assistance. In contrast, we develop a potential energy shaping controller with ground reaction force (GRF) feedback that facilitates multi-activity assistance from a backdrivable exoskeleton without prescribing pre-defined kinematics. Although potential energy shaping was previously implemented in an exoskeleton to reduce the user’s perceived gravity, this model-based approach assumes the stance leg is fully loaded with the weight of the user, resulting in excessive control torques as weight transfers to the contralateral leg during double support. The presented approach uses GRF feedback to taper the torque control output for any activity involving multiple supports, leading to a closer match with normative joint moments in simulations based on pre-recorded human data during level walking. To implement this strategy, we present a custom foot force sensor that provides GRF feedback to the previously designed exoskeleton. Finally, results from an able-bodied human subject experiment demonstrate that the exoskeleton is able to reduce muscular activation of the primary muscles related to the knee and ankle joints during sit-to-stand, stand-to-sit, level walking, and stair climbing. 
    more » « less