skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Empirical Study of Deep Learning Models for LED Signal Demodulation in Optical Camera Communication
Optical camera communication is an emerging technology that enables communication using light beams, where information is modulated through optical transmissions from light-emitting diodes (LEDs). This work conducts empirical studies to identify the feasibility and effectiveness of using deep learning models to improve signal reception in camera communication. The key contributions of this work include the investigation of transfer learning and customization of existing models to demodulate the signals transmitted using a single LED by applying the classification models on the camera frames at the receiver. In addition to investigating deep learning methods for demodulating a single VLC transmission, this work evaluates two real-world use-cases for the integration of deep learning in visual multiple-input multiple-output (MIMO), where transmissions from a LED array are decoded on a camera receiver. This paper presents the empirical evaluation of state-of-the-art deep neural network (DNN) architectures that are traditionally used for computer vision applications for camera communication.  more » « less
Award ID(s):
2000475
PAR ID:
10317912
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Network
Volume:
1
Issue:
3
ISSN:
2673-8732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The directionality of optical signals provides an opportunity for efficient space reuse of optical links in visible light communication (VLC). Space reuse in VLC can enable multiple-access communication from multiple light emitting transmitters. Traditional VLC system design using photo-receptors requires at least one receiving photodetector element for each light emitter, thus constraining VLC to always require a light-emitter to light-receptor element pair. In this paper, we propose, design and evaluate a novel architecture for VLC that can enable multiple-access reception using a photoreceptor receiver that uses only a single photodiode. The novel design includes a liquid-crystal-display (LCD) based shutter system that can be automated to control and enable selective reception of light beams from multiple transmitters. We evaluate the feasibility of multiple access on a single photodiode from two light emitting diode (LED) transmitters and the performance of the communication link using bit-error-rate (BER) and packet-error-rate (PER) metrics. Our experiment and trace based evaluation through proof-of-concept implementation reveals the feasibility of multiple LED reception on a single photodiode. We further evaluate the system in controlled mobile settings to verify the adaptability of the receiver when the LED transmitter changes position. 
    more » « less
  2. null (Ed.)
    In this paper, we present an in-depth study of light emitting diode (LED) based indoor visible light communication positioning system using a smart phone camera with rolling shutter effect, aiming for smart and connected hospital applications. The LED transmits periodical signals with different frequencies as its optical tags. The camera exploits the rolling shutter effect to detect the fundamental frequency of optical signals. The roles of camera parameters determining the rolling effect are studied and a technique to measure the camera readout time per column is presented. Factors limiting the detectable optical frequency range is explained based on the discussion of rolling shutter mechanism. The Fourier spectrum based frequency resolution, which determines the tracking capacity, is analyzed. 
    more » « less
  3. null (Ed.)
    This paper presents a single-aperture, single-pixel reader for communication with Optical Frequency Identification (OFID) tags. OFID tags use solar cells to transmit and receive information wirelessly as well as to harvest radiant energy. Due to its single-aperture architecture, the reader's optical system provides a shared optical path for reception and transmission. Also, physical alignment between the reader and an OFID tag is visually guided using the reader's emitted light, securing a robust data link as long as the OFID tag is illuminated. In this paper, a description of the reader's optical and electronic sub-systems are presented. The transmitter and receiver circuits are described in detail. The transmitter, built with a linear LED driver, achieves a power efficiency of nearly 87%. The receiver, featuring a third-order bandpass filter, reduces both low-frequency and high-frequency ambient noise. A prototype of the reader was fabricated and housed in a custom 3D-printed enclosure. Test results show that the reader is able to receive modulated luminescent signals from an OFID tag at a distance of 1 m and at a data rate of 3 kbps. 
    more » « less
  4. null (Ed.)
    The topic of training machine learning models by employing multiple gradient-computing workers is attracting great interest recently. Communication efficiency in such distributed learning settings is an important consideration, especially for the case where the needed communications are expensive in terms of power usage. We develop a new approach which is efficient in terms of communication transmissions. In this scheme, only the most informative worker results are transmitted to reduce the total number of transmissions. Our ordered gradient approach provably achieves the same order of convergence rate as gradient descent for nonconvex smooth loss functions while gradient descent always requires more communications. Experiments show significant communication savings compared to the best existing approaches in some cases. 
    more » « less
  5. Nissim, K.; Waters, B. (Ed.)
    Recent new constructions of rate-1 OT [Döttling, Garg, Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have led to new feasibility results for private-information retrieval, and homomorphic encryption for branching programs. The receiver communication of this construction consists of a quadratic (in the sender's input size) number of group elements for a single instance of rate-1 OT. Recently [Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear number of group elements for a single string-OT. However, most applications of rate-1 OT require executing it multiple times, resulting in large communication costs for the receiver. In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs. Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT protocol for which the amortized cost per string-OT is asymptotically reduced to only four group elements. Our results lead to significant communication improvements in PSI and PIR, special cases of SFE for branching programs. - PIR: We obtain a rate-1 PIR scheme with client communication cost of $$O(\lambda\cdot\log N)$$ group elements for security parameter $$\lambda$$ and database size $$N$$. Notably, after a one-time setup (or one PIR instance), any following PIR instance only requires communication cost $$O(\log N)$$ number of group elements. - PSI with unbalanced inputs: We apply our techniques to private set intersection with unbalanced set sizes (where the receiver has a smaller set) and achieve receiver communication of $$O((m+\lambda) \log N)$$ group elements where $m, N$ are the sizes of the receiver and sender sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following PSI instance only requires communication cost $$O(m \cdot \log N)$$ number of group elements. All previous sublinear-communication non-FHE based PSI protocols for the above unbalanced setting were also based on rate-1 OT, but incurred at least $$O(\lambda^2 m \log N)$$ group elements. 
    more » « less