Abstract A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents—a large and ecologically diverse group that gave rise to the laboratory mouse and rat model systems. Combining recently published linked-read genome assemblies for seven murine species with other available rodent genomes, we first used ultraconserved elements (UCEs) to infer a robust time-calibrated species tree. We then used whole genomes to examine finer-scale patterns of discordance across ∼12 million years of divergence. We found that proximate chromosomal regions tended to have more similar phylogenetic histories. There was no clear relationship between local tree similarity and recombination rates in house mice, but we did observe a correlation between recombination rates and average similarity to the species tree. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to appreciably less discordance. Finally, we show that assuming a single species tree can result in substantial deviation from the results with gene trees when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies.
more »
« less
Taxonomic Uncertainty and the Anomaly Zone: Phylogenomics Disentangle a Rapid Radiation to Resolve Contentious Species ( Gila robusta Complex) in the Colorado River
Abstract Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed “threatened” status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the “anomaly zone” of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.
more »
« less
- Award ID(s):
- 2010774
- PAR ID:
- 10317917
- Editor(s):
- Holland, Barbara
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feedingDrosophilaspecies. These species form theDrosophila subquinariaspecies complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinariaandD. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support thatD. subquinariais paraphyletic, showing that samples from the geographic region sympatric withD. recensare most closely related toD. recens, whereas samples from the geographic region allopatric withD. recensare most closely related toD. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily fromD. recensintoD. subquinariain the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.more » « less
-
Abstract We reconstruct the species-level phylogenetic relationship among toucans, toucan-barbets, New World barbets using phylogenomic data to assess the monophyly and relationships at the family, generic, and specific levels. Our analyses confirmed (1) the monophyly of toucans (Aves: Ramphastidae), toucan-barbets (Aves: Semnornithidae), and New World barbets (Aves: Capitonidae) and that the toucan-barbets are sister to the toucans, an arrangement suggested, but poorly supported, in previously published phylogenies; (2) the paraphyly of lowland Selenidera toucanets with respect to Andigena mountain-toucans; and (3) evidence of some mitonuclear discordance, suggesting introgression or incomplete lineage sorting. For example, mitonuclear conflict in the phylogenetic placement of Ramphastos vitellinus subspecies suggests that Amazonian populations of Ramphastos vitellinus ariel may have introgressed mitogenomes derived from other Amazonian vitellinus taxa. To reconstruct the phylogenetic history of toucans, toucan-barbets, and New World barbets, we included all species-level taxa from the three families, with the addition of outgroups from the two major clades of Old World barbets (Megalaimidae and Lybiidae). We analyzed a combination of UCE sequences and whole mitochondrial genome sequences to reconstruct phylogenetic trees.more » « less
-
Abstract Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within data sets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade’s species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of the genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower-quality samples. Most instances of topological conflict and nonmonophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, the noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many data sets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology. [Historical DNA; machine learning; museomics; Psittaciformes; species tree.]more » « less
-
Abstract PremiseCentropogonsubgenusCentropogoncomprises 55 species found primarily in midelevation Andean forests featuring some of the most curved flowers among angiosperms. Floral curvature is linked to coevolution with the sicklebill hummingbird, which pollinates most species. Despite charismatic flowers, there is limited knowledge about the phylogenetic relationships and floral evolution. MethodsWe conducted the first densely sampled phylogenomic analysis of the clade using methods that account for incomplete lineage sorting on a sequence capture dataset generated with a lineage‐specific probe set. Using phylogenetic comparative methods, we test for correlated evolution of two traits central to sicklebill pollination. ResultsWe improve understanding of species relationships by more than doubling past taxon sampling. We confirm the monophyly of the subgenus and two sections, and the non‐monophyly of remaining sections. The subgenus is characterized by high gene tree discordance. Three widespread species display contrasting phylogenetic dynamics, withC. cornutusforming a clade andC. granulosusandC. solanifoliusforming non‐monophyletic, biogeographically clustered lineages. Correlated evolution of floral curvature and inflorescence structure has led to multiple putative losses of sicklebill pollination. ConclusionsCentropogonsubgenusCentropogonadds to a growing body of literature of Andean plant clades with high gene tree discordance. This phylogeny serves as a foundational framework for further macroevolutionary investigations into the environmental and biogeographic factors shaping the evolution of pollination‐related traits.more » « less
An official website of the United States government

