skip to main content


Title: Taxonomic Uncertainty and the Anomaly Zone: Phylogenomics Disentangle a Rapid Radiation to Resolve Contentious Species ( Gila robusta Complex) in the Colorado River
Abstract Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed “threatened” status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the “anomaly zone” of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.  more » « less
Award ID(s):
2010774
NSF-PAR ID:
10317917
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Holland, Barbara
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
13
Issue:
9
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    TheGila robustaspecies complex in the lower reaches of the Colorado River includes three nominal and contested species (G. robusta, G. intermedia,andG. nigra) originally defined by morphological and meristic characters. In subsequent investigations, none of these characters proved diagnostic, and species assignments were based on capture location. Two recent studies applied conservation genomics to assess species boundaries and reached contrasting conclusions: an ezRAD phylogenetic study resolved 5 lineages with poor alignment to species categories and proposed a single species with multiple population partitions. In contrast, a dd-RAD coalescent study concluded that the three nominal species are well-supported evolutionarily lineages. Here we developed a draft genome (~ 1.229 Gbp) to apply genome-wide coverage (10,246 SNPs) with nearly range-wide sampling of specimens (G. robustaN = 266,G. intermediaN = 241, andG. nigraN = 117) to resolve this debate. All three nominal species were polyphyletic, whereas 5 of 8 watersheds were monophyletic. AMOVA partitioned 23.1% of genetic variance among nominal species, 30.9% among watersheds, and the Little Colorado River was highly distinct (FSTranged from 0.79 to 0.88 across analyses). Likewise, DAPC identified watersheds as more distinct than species, with the Little Colorado River having 297 fixed nucleotide differences compared to zero fixed differences among the three nominal species. In every analysis, geography explains more of the observed variance than putative taxonomy, and there are no diagnostic molecular or morphological characters to justify species designation. Our analysis reconciles previous work by showing that species identities based on type location are supported by significant divergence, but natural geographic partitions show consistently greater divergence. Thus, our data confirmGila robustaas a single polytypic species with roughly a dozen highly isolated geographic populations, providing a strong scientific basis for watershed-based future conservation.

     
    more » « less
  2. Abstract Aim

    Identification of the processes that generate and maintain species diversity within the same region can provide insight into biogeographic patterns at broader spatiotemporal scales. Hawkfishes in the genusParacirrhitesare a unique taxon to explore with respect to niche differentiation, exhibiting diagnostic differences in coloration, and an apparent center of distribution outside of the Indo–Malay–Philippine (IMP) biodiversity hotspot for coral reef fishes. Our aim is to use next‐generation sequencing methods to leverage samples of a taxon at their center of maximum diversity to explore phylogenetic relationships and a possible mechanism of coexistence.

    Location

    Flint Island, Southern Line Islands, Republic of Kiribati.

    Methods

    A comprehensive review of museum records, the primary literature, and unpublished field survey records was undertaken to determine ranges for four “arc‐eye” hawkfish species in theParacirrhitesspecies complex and a potential hybrid. Fish from fourParacirrhitesspecies were collected from Flint Island in the Southern Line Islands, Republic of Kiribati. Hindgut contents were sequenced, and subsequent metagenomic analyses were used to assess the phylogenetic relatedness of the host fish, the microbiome community structure, and prey remains for each species.

    Results

    Phylogenetic analyses conducted with recovered mitochondrial genomes revealed clustering ofP. bicolorwithP. arcatusandP. xanthuswithP. nisus, which were unexpected on the basis of previous morphological work in this species complex. Differences in taxonomic composition of gut microbial communities and presumed prey remains indicate likely separation of foraging niches.

    Main Conclusions

    Our findings point toward previously unidentified relationships in this cryptic species complex at its proposed center of distribution. The three species endemic to the Polynesian province (P. nisus,P. xanthus, andP. bicolor) cluster separately from the more broadly distributedP. arcatuson the basis of relative abundance of metazoan sequences in the gut (presumed prey remains).Discordance between gut microbial communities and phylogeny of the host fish further reinforce the hypothesis of niche separation.

     
    more » « less
  3. Abstract

    AlthoughConraua goliathis well known as the largest living frog species, the diversity and evolution of the genusConrauaacross sub‐Saharan Africa remain poorly understood. We present multilocus phylogenetic analyses of the six currently recognized species that provide insights into divergence times, biogeography, body size evolution and undescribed species. An analysis of divergence times demonstrates that crown‐groupConrauaarose some time during the latest Oligocene to mid‐Miocene followed by divergence into major lineages in the mid‐Miocene that may reflect the fragmentation of widespread tropical forests in Africa that began at this time. We find three pairs of sister species,C. crassipes + C. beccarii,C. alleni + C. derooiandC. goliath + C. robusta, each of which diverged during the Miocene. These relationships reject phylogenetic hypotheses based solely on biogeography as the geographically peripheralC. beccariifrom north‐eastern Africa is nested within western African species and the Central African species do not form a clade. Our species delimitation analyses provide support for undescribed species inC. alleni,C. beccariiandC. derooi, and possiblyC. crassipes, suggesting that the current taxonomy substantially underestimates species diversity. There is no clear directional trend of either increasing or decreasing body size inConrauaand the three largest species do not form a clade. With a robust phylogenetic hypothesis in hand, further field‐based studies are needed to understand the evolution of morphology and life history in this charismatic African anuran clade.

     
    more » « less
  4. Abstract

    The effects of genetic introgression on species boundaries and how they affect species’ integrity and persistence over evolutionary time have received increased attention. The increasing availability of genomic data has revealed contrasting patterns of gene flow across genomic regions, which impose challenges to inferences of evolutionary relationships and of patterns of genetic admixture across lineages. By characterizing patterns of variation across thousands of genomic loci in a widespread complex of true toads (Rhinella), we assess the true extent of genetic introgression across species thought to hybridize to extreme degrees based on natural history observations and multilocus analyses. Comprehensive geographic sampling of five large‐ranged Neotropical taxa revealed multiple distinct evolutionary lineages that span large geographic areas and, at times, distinct biomes. The inferred major clades and genetic clusters largely correspond to currently recognized taxa; however, we also found evidence of cryptic diversity within taxa. While previous phylogenetic studies revealed extensive mitonuclear discordance, our genetic clustering analyses uncovered several admixed individuals within major genetic groups. Accordingly, historical demographic analyses supported that the evolutionary history of these toads involved cross‐taxon gene flow both at ancient and recent times. Lastly, ABBA‐BABA tests revealed widespread allele sharing across species boundaries, a pattern that can be confidently attributed to genetic introgression as opposed to incomplete lineage sorting. These results confirm previous assertions that the evolutionary history ofRhinellawas characterized by various levels of hybridization even across environmentally heterogeneous regions, posing exciting questions about what factors prevent complete fusion of diverging yet highly interdependent evolutionary lineages.

     
    more » « less
  5. Phages (viruses that infect bacteria) play important roles in the gut ecosystem through infection of bacterial hosts, yet the gut virome remains poorly characterized. Mammalian gut viromes are dominated by double-stranded DNA (dsDNA) phages belonging to the order Caudovirales and single-stranded DNA (ssDNA) phages belonging to the family Microviridae. Since the relative proportion of each of these phage groups appears to correlate with age and health status in humans, it is critical to understand both ssDNA and dsDNA phages in the gut. Building upon prior research describing dsDNA viruses in the gut of Ciona robusta, a marine invertebrate model system used to study gut microbial interactions, this study investigated ssDNA phages found in the Ciona gut. We identified 258 Microviridae genomes, which were dominated by novel members of the Gokushovirinae subfamily, but also represented several proposed phylogenetic groups (Alpavirinae, Aravirinae, Group D, Parabacteroides prophages, and Pequeñovirus) and a novel group. Comparative analyses between Ciona specimens with full and cleared guts, as well as the surrounding water, indicated that Ciona retains a distinct and highly diverse community of ssDNA phages. This study significantly expands the known diversity within the Microviridae family and demonstrates the promise of Ciona as a model system for investigating their role in animal health. 
    more » « less