The circulation of the Northern Hemisphere extratropical troposphere has changed over recent decades, with marked decreases in extratropical cyclone activity and eddy kinetic energy (EKE) in summer and increases in the fraction of precipitation that is convective in all seasons. Decreasing EKE in summer is partly explained by a weakening meridional temperature gradient, but changes in vertical temperature gradients and increasing moisture also affect the mean available potential energy (MAPE), which is the energetic reservoir from which extratropical cyclones draw. Furthermore, the relation of changes in mean thermal structure and moisture to changes in convection associated with extratropical cyclones is poorly understood. Here we calculate trends in MAPE for the Northern extratropics in summer over the years 1979–2017, and we decompose MAPE into both convective and nonconvective components. Nonconvective MAPE decreased over this period, consistent with decreases in EKE and extratropical cyclone activity, but convective MAPE increased, implying an increase in the energy available to convection. Calculations with idealized atmospheres indicate that nonconvective and convective MAPE both increase with increasing mean surface temperature and decrease with decreasing meridional surface temperature gradient, but convective MAPE is relatively more sensitive to the increase in mean surface temperature. These results connect changes in the atmospheric mean state with changes in both large-scale and convective circulations, and they suggest that extratropical cyclones can weaken even as their associated convection becomes more energetic.
more »
« less
Trends and Variability of North American Cool-Season Extratropical Cyclones: 1979–2019
Abstract Extratropical cyclones are the primary driver of sensible weather conditions across the mid-latitudes of North America, often generating various types of precipitation, gusty non-convective winds, and severe convective storms throughout portions of the annual cycle. Given ongoing modifications of the zonal atmospheric thermal gradient due to anthropogenic forcing, analyzing the historical characteristics of these systems presents an important research question. Using the North American Regional Reanalysis, boreal cool-season (October–April) extratropical cyclones for the period 1979–2019 were identified, tracked, and classified based on their genesis location. Additionally, bomb cyclones—extratropical cyclones that recorded a latitude normalized pressure fall of 24 hPa in 24-hr—were identified and stratified for additional analysis. Cyclone lifespan across the domain exhibits a log-linear relationship, with 99% of all cyclones tracked lasting less than 8 days. On average, ≈ 270 cyclones were tracked across the analysis domain per year, with an average of ≈ 18 year −1 being classified as bomb cyclones. The average number of cyclones in the analysis domain has decreased in the last 20 years from 290 year −1 during the period 1979–1999 to 250 year −1 during the period 2000–2019. Spatially, decreasing trends in the frequency of cyclone track counts were noted across a majority of the analysis domain, with the most significant decreases found in Canada’s Northwest Territories, Colorado, and east of the Graah mountain range. No significant interannual or spatial trends were noted with bomb cyclone frequency.
more »
« less
- Award ID(s):
- 2048770
- PAR ID:
- 10318033
- Date Published:
- Journal Name:
- Journal of Applied Meteorology and Climatology
- ISSN:
- 1558-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extratropical cyclones develop in regions of enhanced baroclinicity and progress along climatological storm tracks. Numerous studies have noted an influence of terrestrial snow cover on atmospheric baroclinicity. However, these studies have less typically examined the role that continental snow cover extent and changes anticipated with anthropogenic climate change have on cyclones’ intensities, trajectories, and precipitation characteristics. Here, we examined how projected future poleward shifts in North American snow extent influence extratropical cyclones. We imposed 10th, 50th, and 90th percentile values of snow retreat between the late 20th and 21st centuries as projected by 14 Coupled Model Intercomparison Project Phase Five (CMIP5) models to alter snow extent underlying 15 historical cold-season cyclones that tracked over the North American Great Plains and were faithfully reproduced in control model cases, providing a comprehensive set of model runs to evaluate hypotheses. Simulations by the Advanced Research version of the Weather Research and Forecast Model (WRF-ARW) were initialized at four days prior to cyclogenesis. Cyclone trajectories moved on average poleward (μ = 27 +/− σ = 17 km) in response to reduced snow extent while the maximum sea-level pressure deepened (μ = −0.48 +/− σ = 0.8 hPa) with greater snow removed. A significant linear correlation was observed between the area of snow removed and mean trajectory deviation (r2 = 0.23), especially in mid-winter (r2 = 0.59), as well as a similar relationship for maximum change in sea-level pressure (r2 = 0.17). Across all simulations, 82% of the perturbed simulation cyclones decreased in average central sea-level pressure (SLP) compared to the corresponding control simulation. Near-surface wind speed increased, as did precipitation, in 86% of cases with a preferred phase change from the solid to liquid state due to warming, although the trends did not correlate with the snow retreat magnitude. Our results, consistent with prior studies noting some role for the enhanced baroclinity of the snow line in modulating storm track and intensity, provide a benchmark to evaluate future snow cover retreat impacts on mid-latitude weather systems.more » « less
-
Abstract We present a tracking algorithm for synoptic to meso- α -scale Arctic cyclones that differentiates between cold- and warm-core systems. The algorithm is applied to the ERA5 reanalysis north of 60°N from 1950 to 2019. In this dataset, over one-half of the cyclones that meet minimum intensity and duration thresholds can be classified as cold-core systems. Systems that undergo transition, typically from cold to warm core, make up 27.2% of cyclones and are longer lived. The relatively infrequent warm-core cyclones are more intense and are most common in winter. The Arctic-wide occurrence of maritime cyclones has increased from 1979 to 2019 when compared with the period from 1950 to 1978, but the trends have high interannual variability. This shift has ramifications for transportation, fisheries, and extractive industries, as well as impacts on communities across the Arctic.more » « less
-
null (Ed.)Abstract Statistical relationships between atmospheric rivers (ARs) and extratropical cyclones and anticyclones are investigated on a global scale using objectively identified ARs, cyclones, and anticyclones during 1979–2014. Composites of circulation and moisture fields around the ARs show that a strong cyclone is located poleward and westward of the AR centroid, which confirms the close link between the AR and extratropical cyclone. In addition, a pronounced anticyclone is found to be located equatorward and eastward of the AR, whose presence together with the cyclone leads to strong horizontal pressure gradient that forces moisture to be transported along a narrow corridor within the warm sector of the cyclone. This anticyclone located toward the downstream equatorward side of the cyclone is found to be missing for cyclones not associated with ARs. These key features are robust in composites performed in different hemispheres, over different ocean basins, and with respect to different AR intensities. Furthermore, correlation analysis shows that the AR intensity is much better correlated with the pressure gradient between the cyclone and anticyclone than with the cyclone/anticyclone intensity alone, although stronger cyclones favor the occurrence of AR. The importance of the horizontal pressure gradient in the formation of the AR is also consistent with the fact that climatologically ARs are frequently found over the region between the polar lows and subtropical highs in all seasons.more » « less
-
Abstract Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.more » « less
An official website of the United States government

