skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global aspects of measure preserving equivalence relations and graphs
This paper is an introduction and survey of a “global” theory of measure preserving equivalence relations and graphs. In this theory one views a measure preserving equivalence relation or graph as a point in an appropriate topological space and then studies the properties of this space from a topological, descriptive set theoretic and dynamical point of view.  more » « less
Award ID(s):
1950475
PAR ID:
10318068
Author(s) / Creator(s):
Date Published:
Journal Name:
New Zealand Journal of Mathematics
Volume:
52
ISSN:
1179-4984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The paper provides an overarching framework for the study of some of the intrinsic geometries that a topological group may carry. An initial analysis is based on geometric nonlinear functional analysis, that is, the study of Banach spaces as metric spaces up to various notions of isomorphism, such as bi-Lipschitz equivalence, uniform homeomorphism, and coarse equivalence. This motivates the introduction of the various geometric categories applicable to all topological groups, namely, their uniform and coarse structure, along with those applicable to a more select class, that is, (local) Lipschitz and quasimetric structure. Our study touches on Lie theory, geometric group theory, and geometric nonlinear functional analysis and makes evident that these can all be seen as instances of a single coherent theory. 
    more » « less
  2. null (Ed.)
    Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $$C^{\ast }-$$algebra, the $$C^{\ast }-$$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $$C^{\ast }-$$algebras; any *−representation of the Cuntz–Toeplitz $$C^{\ast }-$$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory. 
    more » « less
  3. An emerging method for data analysis is called Topological Data Analysis (TDA). TDA is based in the mathematical field of topology and examines the properties of spaces under continuous deformation. One of the key tools used for TDA is called persistent homology which considers the connectivity of points in a d-dimensional point cloud at different spatial resolutions to identify topological properties (holes, loops, and voids) in the space. Persistent homology then classifies the topological features by their persistence through the range of spatial connectivity. Unfortunately the memory and run-time complexity of computing persistent homology is exponential and current tools can only process a few thousand points in R3. Fortunately, the use of data reduction techniques enables persistent homology to be applied to much larger point clouds. Techniques to reduce the data range from random sampling of points to clustering the data and using the cluster centroids as the reduced data. While several data reduction approaches appear to preserve the large topological features present in the original point cloud, no systematic study comparing the efficacy of different data clustering techniques in preserving the persistent homology results has been performed. This paper explores the question of topology preserving data reductions and describes formally when and how topological features can be mischaracterized or lost by data reduction techniques. The paper also performs an experimental assessment of data reduction techniques and resilient effects on the persistent homology. In particular, data reduction by random selection is compared to cluster centroids extracted from different data clustering algorithms. 
    more » « less
  4. Data compression is a powerful solution for addressing big data challenges in database and data management. In scientific data compression for vector fields, preserving topological information is essential for accurate analysis and visualization. The topological skeleton, a fundamental component of vector field topology, consists of critical points and their connectivity, known as separatrices. While previous work has focused on preserving critical points in error-controlled lossy compression, little attention has been given to preserving separatrices, which are equally important. In this work, we introduce TspSZ, an efficient error-bounded lossy compression framework designed to preserve both critical points and separatrices. Our key contributions are threefold: First, we propose TspSZ, a topological-skeleton-preserving lossy compression framework that integrates two algorithms. This allows existing critical-point-preserving compressors to also retain separatrices, significantly enhancing their ability to preserve topological structures. Second, we optimize TspSZ for efficiency through tailored improvements and parallelization. Specifically, we introduce a new error control mechanism to achieve high compression ratios and implement a shared-memory parallelization strategy to boost compression throughput. Third, we evaluate TspSZ against state-of-the-art lossy and lossless compressors using four real-world scientific datasets. Experimental results show that TspSZ achieves compression ratios of up to 7.7 times while effectively preserving the topological skeleton. This ensures efficient storage and transmission of scientific data without compromising topological integrity. 
    more » « less
  5. null (Ed.)
    In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $$\infty$$ -categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $$E$$ , we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $$\pi _0(E)$$ , recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $$\mathbb {Z}/8\times \mathbb {Z}/2$$ . Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$ -algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$ -algebra with the same coefficient ring as $$\mathrm {End}_{KO}(KU)$$ . This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$ , previously studied by Mathew and Stojanoska. 
    more » « less