skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Geometries of topological groups

The paper provides an overarching framework for the study of some of the intrinsic geometries that a topological group may carry. An initial analysis is based on geometric nonlinear functional analysis, that is, the study of Banach spaces as metric spaces up to various notions of isomorphism, such as bi-Lipschitz equivalence, uniform homeomorphism, and coarse equivalence. This motivates the introduction of the various geometric categories applicable to all topological groups, namely, their uniform and coarse structure, along with those applicable to a more select class, that is, (local) Lipschitz and quasimetric structure. Our study touches on Lie theory, geometric group theory, and geometric nonlinear functional analysis and makes evident that these can all be seen as instances of a single coherent theory.

 
more » « less
Award ID(s):
2204849
PAR ID:
10511611
Author(s) / Creator(s):
Publisher / Repository:
Amer. Math. Soc.
Date Published:
Journal Name:
Bulletin of the American Mathematical Society
Volume:
60
Issue:
4
ISSN:
0273-0979
Page Range / eLocation ID:
539 to 568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras over metric spaces that are coarse unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent. 
    more » « less
  2. Principled decision-making in continuous state-action spaces is impossible without some assumptions. A common approach is to assume Lipschitz continuity of the Q-function. We show that, unfortunately, this property fails to hold in many typical domains. We propose a new coarse-grained smoothness definition that generalizes the notion of Lipschitz continuity, is more widely applicable, and allows us to compute significantly tighter bounds on Q-functions, leading to improved learning. We provide a theoretical analysis of our new smoothness definition, and discuss its implications and impact on control and exploration in continuous domains. 
    more » « less
  3. We introduce and study Polish topologies on various spaces of countable enumerated groups, where an enumerated group is simply a group whose underlying set is the set of natural numbers. Using elementary tools and well-known examples from combinatorial group theory, combined with the Baire category theorem, we obtain a plethora of results demonstrating that several phenomena in group theory are generic. In effect, we provide a new topological framework for the analysis of various well known problems in group theory. We also provide a connection between genericity in these spaces, the word problem for finitely generated groups and model-theoretic forcing. Using these connections, we investigate a natural question raised by Osin: when does a certain space of enumerated groups contain a comeager isomorphism class? We obtain a sufficient condition that allows us to answer Osin’s question in the negative for the space of all enumerated groups and the space of left orderable enumerated groups. We document several open questions in connection with these considerations.

     
    more » « less
  4. We prove that the simplicial cocommutative coalgebra of singular chains on a connected topological space determines the homotopy type rationally and one prime at a time, without imposing any restriction on the fundamental group. In particular, the fundamental group and the homology groups with coefficients in arbitrary local systems of vector spaces are completely determined by the natural algebraic structure of the chains. The algebraic structure is presented as the class of the simplicial cocommutative coalgebra of chains under a notion of weak equivalence induced by a functor from coalgebras to algebras coined by Adams as the cobar construction. The fundamental group is determined by a quadratic equation on the zeroth homology of the cobar construction of the normalized chains which involves Steenrod’s chain homotopies for cocommutativity of the coproduct. The homology groups with local coefficients are modeled by an algebraic analog of the universal cover which is invariant under our notion of weak equivalence. We conjecture that the integral homotopy type is also determined by the simplicial coalgebra of integral chains, which we prove when the universal cover is of finite type. 
    more » « less
  5. The goal of this paper is to study limiting behavior of a self-organized continuous flock evolving according to the 1D hydrodynamic Euler Alignment model. We provide a series of quantitative estimates that show how far the density of the limiting flock is from a uniform distribution. The key quantity that controls density distortion is the entropy [Formula: see text], and the measure of deviation from uniformity is given by a well-known conserved quantity [Formula: see text], where [Formula: see text] is velocity and [Formula: see text] is the communication operator with kernel [Formula: see text]. The cases of Lipschitz, singular geometric, and topological kernels are covered in the study. 
    more » « less