We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.
more »
« less
Geometries of topological groups
The paper provides an overarching framework for the study of some of the intrinsic geometries that a topological group may carry. An initial analysis is based on geometric nonlinear functional analysis, that is, the study of Banach spaces as metric spaces up to various notions of isomorphism, such as bi-Lipschitz equivalence, uniform homeomorphism, and coarse equivalence. This motivates the introduction of the various geometric categories applicable to all topological groups, namely, their uniform and coarse structure, along with those applicable to a more select class, that is, (local) Lipschitz and quasimetric structure. Our study touches on Lie theory, geometric group theory, and geometric nonlinear functional analysis and makes evident that these can all be seen as instances of a single coherent theory.
more »
« less
- Award ID(s):
- 2204849
- PAR ID:
- 10511611
- Publisher / Repository:
- Amer. Math. Soc.
- Date Published:
- Journal Name:
- Bulletin of the American Mathematical Society
- Volume:
- 60
- Issue:
- 4
- ISSN:
- 0273-0979
- Page Range / eLocation ID:
- 539 to 568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras over metric spaces that are coarse unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.more » « less
-
We introduce and study Polish topologies on various spaces of countable enumerated groups, where an enumerated group is simply a group whose underlying set is the set of natural numbers. Using elementary tools and well-known examples from combinatorial group theory, combined with the Baire category theorem, we obtain a plethora of results demonstrating that several phenomena in group theory are generic. In effect, we provide a new topological framework for the analysis of various well known problems in group theory. We also provide a connection between genericity in these spaces, the word problem for finitely generated groups and model-theoretic forcing. Using these connections, we investigate a natural question raised by Osin: when does a certain space of enumerated groups contain a comeager isomorphism class? We obtain a sufficient condition that allows us to answer Osin’s question in the negative for the space of all enumerated groups and the space of left orderable enumerated groups. We document several open questions in connection with these considerations.more » « less
-
Principled decision-making in continuous state-action spaces is impossible without some assumptions. A common approach is to assume Lipschitz continuity of the Q-function. We show that, unfortunately, this property fails to hold in many typical domains. We propose a new coarse-grained smoothness definition that generalizes the notion of Lipschitz continuity, is more widely applicable, and allows us to compute significantly tighter bounds on Q-functions, leading to improved learning. We provide a theoretical analysis of our new smoothness definition, and discuss its implications and impact on control and exploration in continuous domains.more » « less
-
Abstract Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into$$\mathbb {R}$$-trees have Lipschitz free spaces isomorphic to$$L^1$$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into$$\mathbb {R}$$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to$$\ell ^1$$, (2) the Lipschitz free space over hyperbolicn-space is isomorphic to the Lipschitz free space over Euclideann-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an$$\mathbb {R}$$-tree, has Lipschitz free space isomorphic to$$\ell ^1$$, and admits a proper, uniformly Lipschitz affine action on$$\ell ^1$$.more » « less
An official website of the United States government

