skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Formation of Tropopause Folds and Constituent Gradient Enhancement Near Westerly Jets
Abstract The role of differential advection in creating tropopause folds and strong constituent gradients near midlatitude westerly jets is investigated using the University of Wisconsin Non-hydrostatic Modeling System (UWNMS). Dynamical structures are compared with aircraft observations through a fold and subpolar jet (SPJ) during RF04 of the Stratosphere-Troposphere Analyses of Regional Transport (START08) campaign. The observed distribution of water vapor and ozone during RF04 provides evidence of rapid transport in the SPJ, enhancing constituent gradients above relative to below the intrusion. The creation of a tropopause fold by quasi-isentropic differential advection on the upstream side of the trough is described. This fold was created by a southward jet streak in the SPJ, where upper tropospheric air displaced the tropopause eastward in the 6-10 km layer, thereby overlying stratospheric air in the 3-6 km layer. The subsequent superposition of the subtropical and subpolar jets is also shown to result from quasi-isentropic differential advection. The occurrence of low values of ozone, water vapor, and potential vorticity on the equatorward side of the SPJ can be explained by convective transport of low-ozone air from the boundary layer, dehydration in the updraft, and detrainment of inertially-unstable air in the outflow layer. An example of rapid juxtaposition with stratospheric air in the jet core is shown for RF01. The net effect of upstream convective events is suggested as a fundamental cause of the strong constituent gradients observed in midlatitude jets. Idealized diagrams illustrate the role of differential advection in creating tropopause folds and constituent gradient enhancement.  more » « less
Award ID(s):
1947658
PAR ID:
10318123
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stratospheric ozone, and its response to anthropogenic forcings, provides an important pathway for the coupling between atmospheric composition and climate. In addition to stratospheric ozone’s radiative impacts, recent studies have shown that changes in the ozone layer due to 4xCO2have a considerable impact on the Northern Hemisphere (NH) tropospheric circulation, inducing an equatorward shift of the North Atlantic jet during boreal winter. Using simulations produced with the NASA Goddard Institute for Space Studies (GISS) high-top climate model (E2.2), we show that this equatorward shift of the Atlantic jet can induce a more rapid weakening of the Atlantic meridional overturning circulation (AMOC). The weaker AMOC, in turn, results in an eastward acceleration and poleward shift of the Atlantic and Pacific jets, respectively, on longer time scales. As such, coupled feedbacks from both stratospheric ozone and the AMOC result in a two-time-scale response of the NH midlatitude jet to abrupt 4xCO2forcing: a “fast” response (5–20 years) during which it shifts equatorward and a “total” response (∼100–150 years) during which the jet accelerates and shifts poleward. The latter is driven by a weakening of the AMOC that develops in response to weaker surface zonal winds that result in reduced heat fluxes out of the subpolar gyre and reduced North Atlantic Deep Water formation. Our results suggest that stratospheric ozone changes in the lower stratosphere can have a surprisingly powerful effect on the AMOC, independent of other aspects of climate change. 
    more » « less
  2. Abstract. The El Niño–Southern Oscillation (ENSO) is known to modulate the strength and frequency of stratosphere-to-troposphere transport (STT) of ozone over the Pacific–North American region during late winter to early summer. Dynamical processes that have been proposed to account for this variability include variations in the amount of ozone in the lowermoststratosphere that is available for STT and tropospheric circulation-relatedvariations in the frequency and geographic distribution of individual STTevents. Here we use a large ensemble of Whole Atmosphere Community Climate Model(WACCM) simulations (forced by sea-surface temperature (SST) boundaryconditions consistent with each phase of ENSO) to show that variability inlower-stratospheric ozone and shifts in the Pacific tropospheric jetconstructively contribute to the amount of STT of ozone in the NorthAmerican region during both ENSO phases. In terms of stratosphericvariability, ENSO drives ozone anomalies resembling the Pacific–NorthAmerican teleconnection pattern that span much of the lower stratospherebelow 50 hPa. These ozone anomalies, which dominate over other ENSO-drivenchanges in the Brewer–Dobson circulation (including changes due to both thestratospheric residual circulation and quasi-isentropic mixing), stronglymodulate the amount of ozone available for STT transport. As a result,during late winter (February–March), the stratospheric ozone response to theteleconnections constructively reinforces anomalous ENSO-jet-driven STT ofozone. However, as ENSO forcing weakens as spring progresses into summer(April–June), the direct effects of the ENSO-jet-driven STT transportweaken. Nevertheless, the residual impacts of the teleconnections on theamount of ozone in the lower stratosphere persist, and these anomalies inturn continue to cause anomalous STT of ozone. These results should provehelpful for interpreting the utility of ENSO as a subseasonal predictor ofboth free-tropospheric ozone and the probability of stratospheric ozoneintrusion events that may cause exceedances in surface air qualitystandards. 
    more » « less
  3. Abstract In response to rising , chemistry‐climate models (CCMs) project that extratropical stratospheric ozone will increase, except around 10 and 17 km. We call the muted increases or reductions at these altitudes the “double dip.” The double dip results from surface warming (not stratospheric cooling). Using an idealized photochemical‐transport model, surface warming is found to produce the double dip via tropospheric expansion, which converts ozone‐rich stratospheric air into ozone‐poor tropospheric air. The lower dip results from expansion of the extratropical troposphere, as previously understood. The upper dip results from expansion of the tropical troposphere, low‐ozone anomalies from which are then transported into the extratropics. Large seasonality in the double dip in CCMs can be explained, at least in part, by seasonality in the stratospheric overturning circulation. The remote effects of the tropical tropopause on extratropical ozone complicate the use of (local) tropopause‐following coordinates to remove the effects of global warming. 
    more » « less
  4. Abstract Water vapor and cirrus clouds in the tropical tropopause layer (TTL) are important for the climate and are largely controlled by temperature in the TTL. On interannual timescales, both stratospheric and tropospheric modes of the large‐scale variability could affect temperatures in the TTL. Here multiple linear regression (MLR) is used to investigate explained variance in the cold point tropopause temperature (CPT), cold point tropopause height (CPZ), 83 hPa water vapor (WV83), 83 hPa ozone (O383), and total cirrus cloud fraction with cloud base (TTLCCF) and top (ALLCF) above 14.5 km, all averaged over 15°S‐15°N. Predictors of the MLR are a set of stratospheric and tropospheric large‐scale modes of variability. The MLR explains significant variance in CPT (76%), CPZ (78%), WV83 (65%), O383 (62%), TTLCCF (52%), and ALLCF (36%). The interannual variability of CPT and WV83 is dominated by stratospheric processes associated with the Quasi‐Biennial Oscillation (QBO) and Brewer‐Dobson Circulation (BDC), whereas the variability of CPZ, O383, TTLCCF and ALLCF is also controlled by 500 hPa temperature (T500). Residual variability in CPT and CPZ not captured by the MLR are further significantly correlated to stratospheric temperature. It is shown that the portion of the BDC's shallow branch missed by the eddy heat flux based BDC index contributes significant amounts of the explained variances. 
    more » « less
  5. Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted. 
    more » « less